Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Reprod ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775335

RESUMEN

STUDY QUESTION: Does the chemokine/chemokine receptor axis, involved in immune cell trafficking, contribute to the pathology of testicular inflammation and how does activin A modulate this network? SUMMARY ANSWER: Testicular chemokines and their receptors (especially those essential for trafficking of monocytes) are elevated in orchitis, and activin A modulates the expression of the chemokine/chemokine receptor network to promote monocyte/macrophage and T cell infiltration into the testes, causing extensive tissue damage. WHAT IS KNOWN ALREADY: The levels of CC motif chemokine receptor (CCR)2 and its ligand CC motif chemokine ligand (CCL)2 are increased in experimental autoimmune orchitis (EAO) compared with healthy testes, and mice deficient in CCR2 are protected from EAO-induced tissue damage. Activin A induces CCR2 expression in macrophages, promoting their migration. Moreover, there is a positive correlation between testicular activin A concentration and the severity of autoimmune orchitis. Inhibition of activin A activity by overexpression of follistatin (FST) reduces EAO-induced testicular damage. STUDY DESIGN, SIZE, DURATION: EAO was induced in 10-12-week-old male C57BL/6J (wild-type; WT) and B6.129P2-Ccr2tm1Mae/tm1Mae (Ccr2-/-) mice (n = 6). Adjuvant (n = 6) and untreated (n = 6) age-matched control mice were also included. Testes were collected at 50 days after the first immunization with testicular homogenate in complete Freund's adjuvant. In another experimental setup, WT mice were injected with a non-replicative recombinant adeno-associated viral vector carrying a FST315-expressing gene cassette (rAAV-FST315; n = 7-9) or an empty control vector (n = 5) 30 days prior to EAO induction. Appropriate adjuvant (n = 4-5) and untreated (n = 4-6) controls were also examined. Furthermore, human testicular biopsies exhibiting focal leukocytic infiltration and impaired spermatogenesis (n = 17) were investigated. Biopsies showing intact spermatogenesis were included as controls (n = 9). Bone-marrow-derived macrophages (BMDMs) generated from WT mice were treated with activin A (50 ng/ml) for 6 days. Activin-A-treated or untreated BMDMs were then co-cultured with purified mouse splenic T cells for two days to assess chemokine and cytokine production. PARTICIPANTS/MATERIALS, SETTING, METHODS: Quantitative real-time PCR (qRT-PCR) was used to analyze the expression of chemokines in total testicular RNA collected from mice. Immunofluorescence staining was used to detect activin A, F4/80, and CD3 expression in mouse testes. The expression of chemokine/chemokine-receptor-encoding genes was examined in human testicular biopsies by qRT-PCR. Correlations between chemokine expression levels and either the immune cell infiltration density or the mean spermatogenesis score were analyzed. Immunofluorescence staining was used to evaluate the expression of CD68 and CCR2 in human testicular biopsies. RNA isolated from murine BMDMs was used to characterize these cells in terms of their chemokine/chemokine receptor expression levels. Conditioned media from co-cultures of BMDMs and T cells were collected to determine chemokine levels and the production of pro-inflammatory cytokines tumor necrosis factor (TNF) and interferon (IFN)-γ by T cells. MAIN RESULTS AND THE ROLE OF CHANCE: Induction of EAO in the testes of WT mice increased the expression of chemokine receptors such as Ccr1 (P < 0.001), Ccr2 (P < 0.0001), Ccr3 (P < 0.0001), Ccr5 (P < 0.0001), CXC motif chemokine receptor (Cxcr)3 (P < 0.01), and CX3C motif chemokine receptor (Cx3cr)1 (P < 0.001), as well as that of most of their ligands. Ccr2 deficiency reversed some of the changes associated with EAO by reducing the expression of Ccr1 (P < 0.0001), Ccr3 (P < 0.0001), Ccr5 (P < 0.01), Cxcr3 (P < 0.001), and Cx3cr1 (P < 0.0001). Importantly, the biopsies showing impaired spermatogenesis and concomitant focal leukocytic infiltration exhibited higher expression of CCL2 (P < 0.01), CCR1 (P < 0.05), CCR2 (P < 0.001), and CCR5 (P < 0.001) than control biopsies with no signs of inflammation and intact spermatogenesis. The gene expression of CCR2 and its ligand CCL2 correlated positively with the immune cell infiltration density (P < 0.05) and negatively with the mean spermatogenesis score (P < 0.001). Moreover, CD68+ macrophages expressing CCR2 were present in human testes with leukocytic infiltration with evidence of tubular damage. Treatment of BMDMs, as surrogates for testicular macrophages, with activin A increased their expression of Ccr1, Ccr2, and Ccr5 while reducing their expression of Ccl2, Ccl3, Ccl4, Ccl6, Ccl7 Ccl8, and Ccl12. These findings were validated in vivo, by showing that inhibiting activin A activity by overexpressing FST in EAO mice decreased the expression of Ccr2 (P < 0.05) and Ccr5 (P < 0.001) in the testes. Interestingly, co-culturing activin-A-treated BMDMs and T cells reduced the levels of CCL2 (P < 0.05), CCL3/4 (P < 0.01), and CCL12 (P < 0.05) in the medium and attenuated the production of TNF (P < 0.05) by T cells. The majority of cells secreting activin A in EAO testes were identified as macrophages. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: BMDMs were used as surrogates for testicular macrophages. Hence, results obtained from the in vitro experiments might not be fully representative of the situation in the testes in vivo. Moreover, since total RNA was extracted from the testicular tissue to examine chemokine expression, the contributions of individual cell types as producers of specific chemokines may have been overlooked. WIDER IMPLICATIONS OF THE FINDINGS: Our data indicate that macrophages are implicated in the development and progression of testicular inflammation by expressing CCR2 and activin A, which ultimately remodel the chemokine/chemokine receptor network and recruit other immune cells to the site of inflammation. Consequently, inhibition of CCR2 or activin A could serve as a potential therapeutic strategy for reducing testicular inflammation. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the International Research Training Group in 'Molecular pathogenesis on male reproductive disorders', a collaboration between Justus Liebig University (Giessen) and Monash University (Melbourne) (GRK1871/1-2) funded by the Deutsche Forschungsgemeinschaft and Monash University, a National Health and Medical Research Council of Australia Ideas Grant (1184867), and the Victorian Government's Operational Infrastructure Support Programme. The authors declare no competing financial interests.

2.
Cell Mol Life Sci ; 79(12): 602, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434305

RESUMEN

Experimental autoimmune-orchitis (EAO), a rodent model of chronic testicular inflammation and fibrosis, replicates pathogenic changes seen in some cases of human spermatogenic disturbances. During EAO, increased levels of pro-inflammatory and pro-fibrotic mediators such as TNF, CCL2, and activin A are accompanied by infiltration of leukocytes into the testicular parenchyma. Activin A levels correlate with EAO severity, while elevated CCL2 acting through its receptor CCR2 mediates leukocyte trafficking and recruits macrophages. CCR2 + CXCR4 + macrophages producing extracellular matrix proteins contribute widely to fibrogenesis. Furthermore, testicular macrophages (TMs) play a critical role in organ homeostasis. Therefore, we aimed to investigate the role of the activin A/CCL2-CCR2/macrophage axis in the development of testicular fibrosis. Following EAO induction, we observed lower levels of organ damage, collagen deposition, and leukocyte infiltration (including fibronectin+, collagen I+ and CXCR4+ TMs) in Ccr2-/- mice than in WT mice. Furthermore, levels of Il-10, Ccl2, and the activin A subunit Inhba mRNAs were lower in Ccr2-/- EAO testes. Notably, fibronectin+ TMs were also present in biopsies from patients with impaired spermatogenesis and fibrotic alterations. Overexpression of the activin A antagonist follistatin reduced tissue damage and collagen I+ TM accumulation in WT EAO testes, while treating macrophages with activin A in vitro increased the expression of Ccr2, Fn1, Cxcr4, and Mmp2 and enhanced migration along a CCL2 gradient; these effects were abolished by follistatin. Taken together, our data indicate that CCR2 and activin A promote fibrosis during testicular inflammation by regulating macrophage function. Inhibition of CCR2 or activin A protects against damage progression, offering a promising avenue for therapeutic intervention.


Asunto(s)
Orquitis , Masculino , Humanos , Ratones , Animales , Folistatina , Fibronectinas , Macrófagos , Fibrosis , Inflamación , Receptores CCR2/genética
3.
Histochem Cell Biol ; 158(4): 345-368, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35829816

RESUMEN

Fetal testis growth involves cell influx and extensive remodeling. Immediately after sex determination in mouse, macrophages enable normal cord formation and removal of inappropriately positioned cells. This study provides new information about macrophages and other immune cells after cord formation in fetal testes, including their density, distribution, and close cellular contacts. C57BL6J mouse testes from embryonic day (E) 13.5 to birth (post-natal day 0; PND0), were examined using immunofluorescence, immunohistochemistry, and RT-qPCR to identify macrophages (F4/80, CD206, MHCII), T cells (CD3), granulocytes/neutrophils (Ly6G), and germ cells (DDX4). F4/80+ cells were the most abundant, comprising 90% of CD45+ cells at E13.5 and declining to 65% at PND0. Changes in size, shape, and markers (CD206 and MHCII) documented during this interval align with the understanding that F4/80+ cells have different origins during embryonic life. CD3+ cells and F4/80-/MHCII+ were absent to rare until PND0. Ly6G+ cells were scarce at E13.5 but increased robustly by PND0 to represent half of the CD45+ cells. These immunofluorescence data were in accord with transcript analysis, which showed that immune marker mRNAs increased with testis age. F4/80+ and Ly6G+ cells were frequently inside cords adjacent to germ cells at E13.5 and E15.5. F4/80+ cells were often in clusters next to other immune cells. Macrophages inside cords at E13.5 and E15.5 (F4/80Hi/CD206+) were different from macrophages at PND0 (F4/80Dim/CD206-), indicating that they have distinct origins. This histological quantification coupled with transcript information identifies new cellular interactions for immune cells in fetal testis morphogenesis, and highlights new avenues for studies of their functional significance.


Asunto(s)
Macrófagos , Testículo , Animales , Desarrollo Fetal , Células Germinativas , Masculino , Ratones , Morfogénesis
4.
FASEB J ; 34(4): 5697-5714, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32141144

RESUMEN

Type 2 diabetes (T2D) manifests from inadequate glucose control due to insulin resistance, hypoinsulinemia, and deteriorating pancreatic ß-cell function. The pro-inflammatory factor Activin has been implicated as a positive correlate of severity in T2D patients, and as a negative regulator of glucose uptake by skeletal muscle, and of pancreatic ß-cell phenotype in mice. Accordingly, we sought to determine whether intervention with the Activin antagonist Follistatin can ameliorate the diabetic pathology. Here, we report that an intravenous Follistatin gene delivery intervention with tropism for striated muscle reduced the serum concentrations of Activin B and improved glycemic control in the db/db mouse model of T2D. Treatment reversed the hyperglycemic progression with a corresponding reduction in the percentage of glycated-hemoglobin to levels similar to lean, healthy mice. Follistatin gene delivery promoted insulinemia and abundance of insulin-positive pancreatic ß-cells, even when treatment was administered to mice with advanced diabetes, supporting a mechanism for improved glycemic control associated with maintenance of functional ß-cells. Our data demonstrate that single-dose intravascular Follistatin gene delivery can ameliorate the diabetic progression and improve prognostic markers of disease. These findings are consistent with other observations of Activin-mediated mechanisms exerting deleterious effects in models of obesity and diabetes, and suggest that interventions that attenuate Activin signaling could help further understanding of T2D and the development of novel T2D therapeutics.


Asunto(s)
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Folistatina/genética , Técnicas de Transferencia de Gen , Terapia Genética , Control Glucémico , Hiperglucemia/terapia , Administración Intravenosa , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Folistatina/administración & dosificación , Hiperglucemia/genética , Resistencia a la Insulina , Ratones
5.
Mol Hum Reprod ; 26(4): 215-227, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32011693

RESUMEN

Ascending bacterial urinary tract infections can cause epididymo-orchitis. In the cauda epididymidis, this frequently leads to persistent tissue damage. Less coherent data is available concerning the functional consequences of epididymo-orchitis on testis and caput epididymidis. This in vivo study addresses the functional and spatial differences in responsiveness of murine epididymis and testis to infection with uropathogenic Escherichia coli (UPEC). Whole transcriptome analysis (WTA) was performed on testis, caput, corpus and cauda epididymidis of adult C57BL/6 J wildtype mice. Following UPEC-induced epididymo-orchitis in these mice, epididymal and testicular tissue damage was evaluated histologically and semi-quantitatively at 10 days and 31 days post-inoculation. Expression of inflammatory markers and candidate antimicrobial genes were analysed by RT-qPCR. WTA revealed distinct differences in gene signatures between caput and cauda epididymidis, particularly amonst immunity-related genes. Cellular and molecular signs of testicular inflammation and disruption of spermatogenesis were noticed at day 10, but recovery was observed by day 31. In contrast to the cauda, the caput epididymidis did not reveal any signs of gross morphological damage or presence of pro-inflammatory processes despite confirmed infection. In contrast to beta-defensins, known UPEC-associated antimicrobial peptides (AMP), like Lcn2, Camp and Lypd8, were inherently highly expressed or upregulated in the caput following infection, potentially allowing an early luminal protection from UPEC. At the time points investigated, the caput epididymidis was protected from any obvious infection/inflammation-derived tissue damage. Studies addressing earlier time-points will conclude whether in the caput epididymidis a pro-inflammatory response is indeed not essential for effective protection from UPEC.


Asunto(s)
Epididimitis/patología , Infecciones por Escherichia coli/patología , Orquitis/patología , Infecciones Urinarias/patología , Escherichia coli Uropatógena , Animales , Epidídimo/inmunología , Epidídimo/patología , Epididimitis/inmunología , Epididimitis/microbiología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Proteínas Ligadas a GPI/metabolismo , Perfilación de la Expresión Génica , Inmunidad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Orquitis/inmunología , Orquitis/microbiología , Testículo/inmunología , Infecciones Urinarias/inmunología , Infecciones Urinarias/microbiología , beta-Defensinas/metabolismo
6.
Cell Tissue Res ; 381(2): 351-360, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32383098

RESUMEN

Epididymitis is a common pathology of the male reproductive tract, potentially leading to infertility. Studies on bacterial epididymitis indicate that the cauda epididymis is more susceptible to inflammatory damage than the caput. These regional differences in immunoregulation are further investigated using an experimental autoimmune epididymo-orchitis model. Adult mice were immunized against testicular antigens and tissues were collected at 30 and 50 days following the first immunization. Epididymitis developed progressively; 70% of the mice developed disease at 30 days after the initial immunization and 93% at 50 days. Epididymitis was characterized by epithelial damage, immune cell infiltrates and fibrosis in the cauda, with minimal changes in the corpus, while the caput was unaffected. The incidence of epididymitis was greater than that of orchitis but similar to vasitis. The severity of epididymitis was positively correlated with the orchitis severity. Expression of key genes implicated in epididymal immunoregulation, inflammation and fibrosis, such as Ido1, Tnf, Tgfb1, Ccl2, Il1b, Il10, Cx3cl1 and Col1a1, was unchanged in the caput but increased in proportion to damage severity in the cauda at 50 days. Activin receptor mRNA expression in the cauda was negatively correlated with disease severity. These data suggest that the cauda is highly susceptible to inflammatory damage following an autoimmune challenge but the caput is minimally affected. This may be because the cauda is required to combat ascending infections through a robust inflammatory response, while the caput provides a more tolerogenic environment in order to protect the auto-antigenic sperm released from the testis.


Asunto(s)
Enfermedades Autoinmunes/patología , Epidídimo , Epididimitis/inmunología , Expresión Génica/inmunología , Animales , Biomarcadores/metabolismo , Epidídimo/inmunología , Epidídimo/patología , Fibrosis , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Hum Reprod ; 34(7): 1195-1205, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31211847

RESUMEN

STUDY QUESTION: Can dexamethasone improve infertility-related cauda epididymidal tissue damage caused by bacterial epididymitis? SUMMARY ANSWER: Dexamethasone in addition to anti-microbial treatment effectively reduces long-term deleterious epididymal tissue damage by dampening the host's adaptive immune response. WHAT IS KNOWN ALREADY: Despite effective anti-microbial treatment, ~40% of patients with epididymitis experience subsequent sub- or infertility. An epididymitis mouse model has shown that the host immune response is mainly responsible for the magnitude of epididymal tissue damage that is fundamentally causative of the subsequent fertility issues. STUDY DESIGN, SIZE, DURATION: Bacterial epididymitis was induced in male mice by using uropathogenic Escherichia coli (UPEC). From Day 3 after infection onwards, mice were treated with daily doses of levofloxacin (20 mg/kg, total n = 12 mice), dexamethasone (0.5 mg/kg, total n = 9) or both in combination (total n = 11) for seven consecutive days. Control animals were left untreated, i.e. given no interventional treatment following UPEC infection (total n = 11). Half of the animals from each group were killed either at 10 or 31 days post-infection. PARTICIPANTS/MATERIALS, SETTING, METHODS: A mouse model of induced bacterial epididymitis was applied to adult male C57BL/6J mice. At the respective endpoints (10 or 31 days post-infection), epididymides were collected. Effectiveness of antibiotic treatment was assessed by plating of epididymal homogenates onto lysogeny broth agar plates. Overall tissue morphology and the degree and nature of tissue damage were assessed histologically. Quantitative RT-PCR was used to assess local cytokine transcript levels. Blood was drawn and serum analysed for systemic IgG and IgM levels by ELISA. In addition, correlation analyses of clinical data and serum-analyses of IgG and IgM levels in patients with epididymitis were performed. MAIN RESULTS AND THE ROLE OF CHANCE: The addition of dexamethasone to the standard anti-microbial treatment did not further worsen epididymal tissue integrity. In fact, an obviously dampened immune response and reduced tissue reaction/damage was observed at both 10 and 31 days post-infection following combined treatment. More specifically, epididymal duct continuity was preserved, enabling sperm transit. In contrast, in untreated or antibiotic-treated animals, damage of the epididymal duct and duct constrictions were observed, associated with a lack of cauda spermatozoa. In line with the bacteriostatic/bactericidal effect of levofloxacin (alone as well as in combination), local cytokine transcript levels were significantly and similarly reduced in animals treated with levofloxacin alone (P < 0.01) or in combination with dexamethasone (P < 0.05) compared to UPEC-infected untreated animals. Interestingly, the addition of dexamethasone to the anti-microbial treatment induced a unique dampening effect on adaptive immunity, since systemic IgG and IgM levels as well as the pan-T cell marker CD3 were reduced at both 10 and 31 days post-infection. LIMITATIONS, REASONS FOR CAUTION: Breeding studies to address the fertility-protecting effect of the combined treatment were not possible in the experimental animals because the vas deferens was ligated (model specific). WIDER IMPLICATIONS OF THE FINDINGS: Whereas innate immunity is necessary and involved in acute bacterial clearance, adaptive immunity seems to be responsible for long-term, subclinical immunological activities that may negatively affect the pathogenesis of bacterial epididymitis even after effective bacterial eradication. These effects can be reduced in mice by the additional treatment with dexamethasone. This immunological characteristic of bacterial epididymitis shows similarities to the Jarisch-Herxheimer reaction known from other types of bacterial infection. STUDY FUNDING/COMPETING INTEREST(S): The study was supported by grants from the Deutsche Forschungsgemeinschaft, Monash University and the Medical Faculty of Justus-Liebig University to the International Research Training Group on 'Molecular pathogenesis of male reproductive disorders' (GRK 1871). R.W., K.L.L. and M.P.H. were supported by grants from the National Health and Medical Research Council of Australia (ID1079646, ID1081987, ID1020269 and ID1063843) and by the Victorian Government's Operational Infrastructure Support Program. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: No clinical trial involved.


Asunto(s)
Antiinflamatorios/uso terapéutico , Dexametasona/uso terapéutico , Epidídimo/efectos de los fármacos , Epididimitis/tratamiento farmacológico , Infertilidad Masculina/tratamiento farmacológico , Inmunidad Adaptativa/efectos de los fármacos , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinflamatorios/farmacología , Carga Bacteriana , Citocinas/metabolismo , Dexametasona/farmacología , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada , Epidídimo/metabolismo , Epidídimo/patología , Epididimitis/complicaciones , Epididimitis/metabolismo , Epididimitis/patología , Transición Epitelial-Mesenquimal , Fibrosis , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Infertilidad Masculina/etiología , Levofloxacino/uso terapéutico , Masculino , Ratones Endogámicos C57BL
8.
Hum Reprod ; 34(8): 1536-1550, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31340036

RESUMEN

STUDY QUESTION: Does activin A contribute to testicular fibrosis under inflammatory conditions? SUMMARY ANSWER: Our results show that activin A and key fibrotic proteins are increased in human testicular biopsies with leukocytic infiltrates and impaired spermatogenesis and in murine experimental autoimmune orchitis (EAO) and that activin A stimulates fibrotic responses in peritubular cells (PTCs) and NIH 3T3 fibroblasts. WHAT IS KNOWN ALREADY: Fibrosis is a feature of EAO. Activin A, a regulator of fibrosis, was increased in testes of mice with EAO and its expression correlated with severity of the disease. STUDY DESIGN, SIZE, DURATION: This is a cross-sectional and longitudinal study of adult mice immunized with testicular homogenate (TH) in adjuvant to induce EAO, collected at 30 (n = 6), 50 (n = 6) and 80 (n = 5) days after first immunization. Age-matched mice injected with adjuvant alone (n = 14) and untreated mice (n = 15) were included as controls. TH-immunized mice with elevated endogenous follistatin, injected with a non-replicative recombinant adeno-associated viral vector carrying a gene cassette of follistatin (rAAV-FST315; n = 3) or vector with an empty cassette (empty vector controls; n = 2) 30 days prior to the first immunization, as well as appropriate adjuvant (n = 2) and untreated (n = 2) controls, were also examined.Human testicular biopsies showing focal inflammatory lesions associated with impaired spermatogenesis (n = 7) were included. Biopsies showing intact spermatogenesis without inflammation, from obstructive azoospermia patients, served as controls (n = 7).Mouse primary PTC and NIH 3T3 fibroblasts were stimulated with activin A and follistatin 288 (FST288) to investigate the effect of activin A on the expression of fibrotic markers. Production of activin A by mouse primary Sertoli cells (SCs) was also investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS: Testicular RNA and protein extracts collected from mice at days 30, 50 and 80 after first immunization were used for analysis of fibrotic marker genes and proteins, respectively. Total collagen was assessed by hydroxyproline assay and fibronectin; collagen I, III and IV, α-smooth muscle actin (α-SMA) expression and phosphorylation of suppressor of mothers against decapentaplegic (SMAD) family member 2 were measured by western blot. Immunofluorescence was used to detect fibronectin. Fibronectin (Fn), αSMA (Acta2), collagen I (Col1a2), III (Col3a1) and IV (Col4a1) mRNA in PTC and NIH 3T3 cells treated with activin A and/or FST288 were measured by quantitative RT-PCR (qRT-PCR). Activin A in SC following tumour necrosis factor (TNF) or FST288 stimulation was measured by ELISA. Human testicular biopsies were analysed by qRT-PCR for PTPRC (CD45) and activin A (INHBA), hydroxyproline assay and immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE: Production of activin A by SC was stimulated by 25 and 50 ng/ml TNF (P < 0.01, P < 0.001, respectively) as compared to untreated cells. INHBA mRNA was increased in human testicular biopsies with leukocytic infiltrates and impaired spermatogenesis, compared with control biopsies (P < 0.05), accompanied by increased total collagen (P < 0.01) and fibronectin deposition. Total testicular collagen (P < 0.0001) and fibronectin protein expression (P < 0.05) were also increased in EAO, and fibronectin expression was correlated with the severity of the disease (r = 0.9028). In animals pre-treated with rAAV-FST315 prior to immunization with TH, protein expression of fibronectin was comparable to control. Stimulation of PTC and NIH 3T3 cells with activin A increased fibronectin mRNA (P < 0.05) and the production of collagen I (P < 0.001; P < 0.01) and fibronectin (P < 0.05). Moreover, activin A also increased collagen IV mRNA (P < 0.05) in PTC, while αSMA mRNA (P < 0.01) and protein (P < 0.0001) were significantly increased by activin A in NIH 3T3 cells. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: A limited number of human testicular specimens was available for the study. Part of the study was performed in vitro, including NIH 3T3 cells as a surrogate for testicular fibroblasts. WIDER IMPLICATIONS OF THE FINDINGS: Resident fibroblasts and PTC may contribute to the progression of testicular fibrosis following inflammation, and activin A is implicated as a key mediator of this process. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Health and Medical Research Council of Australia, the Victorian Government's Operational Infrastructure Support Program and the International Research Training Group between Justus Liebig University (Giessen) and Monash University (Melbourne) (GRK 1871/1-2) on `Molecular pathogenesis on male reproductive disorders' funded by the Deutsche Forschungsgemeinschaft and Monash University. The authors declare no competing financial interests.


Asunto(s)
Activinas/metabolismo , Infertilidad Masculina/metabolismo , Orquitis/metabolismo , Testículo/metabolismo , Animales , Colágeno/metabolismo , Fibronectinas/metabolismo , Fibrosis/metabolismo , Fibrosis/patología , Folistatina/genética , Folistatina/metabolismo , Humanos , Infertilidad Masculina/patología , Masculino , Ratones , Orquitis/patología , Espermatogénesis , Testículo/patología
9.
Reprod Domest Anim ; 54(12): 1596-1603, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31549426

RESUMEN

Metabolic homeostasis is aligned with changes in growth and body composition, through processes mediated by circulating metabolites and metabolic hormones, and is eventually linked to reproductive success. In the present study with sheep, we determined the relationships among phenotypic and genotypic rates of growth, muscle and fat accumulation, and the circulating concentrations of metabolic and tested for relationships with the timing of puberty and subsequent reproductive outcomes. We used 64 females and 62 males with known phenotypic values for depth of eye muscle (EMD) and fat (FAT) and known Australian Sheep Breeding Values at post-weaning age for live weight (PWT), depth of eye muscle (PEMD) and depth of fat (PFAT). Blood plasma sampled every 20 min for 8 hr via was assayed for growth hormone (GH), insulin-like growth factor I (IGF-I), insulin, leptin, ghrelin, follistatin, glucose and non-esterified fatty acids (NEFA). In males, PWT was positively related to the concentrations of GH, follistatin and glucose, whereas FAT and PFAT were positively related to IGF-I concentrations (p < .01). Testosterone concentration was negatively related to muscle variables (p < .001) and to PFAT (p < .05). In females, the only significant relationship detected was the positive link between EMD and insulin concentrations (p < .05). Reproductive variables were only measured in females. Live weight at first oestrus was related positively to insulin concentration and negatively to GH concentration (p < .05). No other relationships with reproductive variables were significant. The relationships that were detected suggest subtle differences between the sexes in the way their metabolic homeostasis responds to changes in the rates of growth, and muscle and fat accumulation, perhaps due to interference by testosterone in the males.


Asunto(s)
Tejido Adiposo/crecimiento & desarrollo , Músculo Esquelético/crecimiento & desarrollo , Reproducción , Maduración Sexual , Oveja Doméstica/crecimiento & desarrollo , Tejido Adiposo/fisiología , Animales , Femenino , Folistatina/sangre , Hormona del Crecimiento/sangre , Insulina/sangre , Factor I del Crecimiento Similar a la Insulina/metabolismo , Leptina/sangre , Masculino , Músculo Esquelético/fisiología , Selección Genética
10.
Mol Hum Reprod ; 24(3): 111-122, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29361143

RESUMEN

STUDY QUESTION: What is the role of epididymal cysteine-rich secretory proteins (CRISPs) in male fertility? SUMMARY ANSWER: While epididymal CRISPs are not absolutely required for male fertility, they are required for optimal sperm function. WHAT IS KNOWN ALREADY: CRISPs are members of the CRISP, Antigen 5 and Pathogenesis related protein 1 (CAP) superfamily and are characterized by the presence of an N-terminal CAP domain and a C-terminal CRISP domain. CRISPs are highly enriched in the male reproductive tract of mammals, including in the epididymis. Within humans there is one epididymal CRISP, CRISP1, whereas in mice there are two, CRISP1 and CRISP4. STUDY DESIGN, SIZE, DURATION: In order to define the role of CRISPs within the epididymis, Crisp1 and Crisp4 knockout mouse lines were produced then interbred to produce Crisp1 and 4 double knockout (DKO) mice, wherein the expression of all epididymal CRISPs was ablated. Individual and DKO models were then assessed, relative to their own strain-specific wild type littermates for fertility, and sperm output and functional competence at young (10-12 weeks of age) and older ages (22-24 weeks). Crisp1 and 4 DKO and control mice were also compared for their ability to bind to the zona pellucida and achieve fertilization. PARTICIPANTS/MATERIALS, SETTING, METHODS: Knockout mouse production was achieved using modified embryonic stem cells and standard methods. The knockout of individual genes was confirmed at a mRNA (quantitative PCR) and protein (immunochemistry) level. Fertility was assessed using breeding experiments and a histological assessment of testes and epididymal tissue. Sperm functional competence was assessed using a computer assisted sperm analyser, induction of the acrosome reaction using progesterone followed by staining for acrosome contents, using immunochemical and western blotting to assess the ability of sperm to manifest tyrosine phosphorylation under capacitating conditions and using sperm-zona pellucida binding assays and IVF methods. A minimum of three biological replicates were used per assay and per genotype. MAIN RESULTS AND THE ROLE OF CHANCE: While epididymal CRISPs are not absolutely required for male fertility, their production results in enhanced sperm function and, depending on context, CRISP1 and CRISP4 act redundantly or autonomously. Specifically, CRISP1 is the most important CRISP in the establishment of normally motile sperm, whereas CRISP4 acts to enhance capacitation-associated tyrosine phosphorylation, and CRISP1 and CRISP4 act together to establish normal acrosome function. Both are required to achieve optimal sperm-egg interaction. The presence of immune infiltrates into the epididymis of older, but not younger, DKO animals also suggests epididymal CRISPs function to produce an immune privileged environment for maturing sperm within the epididymis. LIMITATIONS REASONS FOR CAUTION: Caution should be displayed in the translation of mouse-derived data into the human wherein the histology of the epididymis is someone what different. The mice used in the study were housed in a specific pathogen-free environment and were thus not exposed to the full range of environmental challenges experienced by wild mice or humans. As such, the role of CRISPs in the maintenance of an immune privileged environment, for example, may be understated. WIDER IMPLICATIONS OF THE FINDINGS: The combined deletion of Crisp1 and Crisp4 in mice is equivalent to the removal of all CRISP expression in humans. As such, these data suggest that mammalian CRISPs, including that in humans, function to enhance sperm function and thus male fertility. These data also suggest that in the presence of an environmental challenge, CRISPs help to maintain an immune privileged environment and thus, protect against immune-mediated male infertility. LARGE SCALE DATA: Not applicable. STUDY FUNDING AND COMPETING INTEREST(S): This study was funded by the National Health and Medical Research Council, the Victorian Cancer Agency and a scholarship from the Chinese Scholarship Council. The authors have no conflicts of interest to declare.


Asunto(s)
Epidídimo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Plasma Seminal/metabolismo , Maduración del Esperma/fisiología , Acrosoma/metabolismo , Acrosoma/fisiología , Animales , Línea Celular , Femenino , Humanos , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Proteínas de Plasma Seminal/genética , Maduración del Esperma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA