Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Hyperthermia ; 39(1): 967-976, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35853735

RESUMEN

PURPOSE: Hyperthermia treatments are successful adjuvants to conventional cancer therapies in which the tumor is sensitized by heating. To monitor and guide the hyperthermia treatment, measuring the tumor and healthy tissue temperature is important. The typical clinical practice heavily relies on intraluminal probe measurements that are uncomfortable for the patient and only provide spatially sparse temperature information. A solution may be offered through recent advances in magnetic resonance thermometry, which allows for three-dimensional internal temperature measurements. However, these measurements are not widely used in the pelvic region due to a low signal-to-noise ratio and presence of image artifacts. METHODS: To advance the clinical integration of magnetic resonance-guided cancer treatments, we consider the problem of removing air-motion-induced image artifacts. Thereto, we propose a new combined thermal and magnetic susceptibility model-based temperature estimation scheme that uses temperature estimates to improve the removal of air-motion-induced image artifacts. The method is experimentally validated using a dedicated phantom that enables the controlled injection of air-motion artifacts and with in vivo thermometry from a clinical hyperthermia treatment. RESULTS: We showed, using probe measurements in a heated phantom, that our method reduced the mean absolute error (MAE) by 58% compared to the state-of-the-art near a moving air volume. Moreover, with in vivo thermometry our method obtained a MAE reduction between 17% and 95% compared to the state-of-the-art. CONCLUSION: We expect that the combined thermal and magnetic susceptibility modeling used in model-based temperature estimation can significantly improve the monitoring in hyperthermia treatments and enable feedback strategies to further improve MR-guided hyperthermia cancer treatments.


Asunto(s)
Hipertermia Inducida , Neoplasias , Termometría , Artefactos , Humanos , Hipertermia Inducida/métodos , Imagen por Resonancia Magnética/métodos , Protones , Termometría/métodos
2.
Int J Hyperthermia ; 38(1): 1174-1187, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34374624

RESUMEN

PURPOSE: This article will report results from the in-vivo application of a previously published model-predictive control algorithm for MR-HIFU hyperthermia. The purpose of the investigation was to test the controller's in-vivo performance and behavior in the presence of heterogeneous perfusion. MATERIALS AND METHODS: Hyperthermia at 42°C was induced and maintained for up to 30 min in a circular section of a thermometry slice in the biceps femoris of German landrace pigs (n=5) using a commercial MR-HIFU system and a recently developed MPC algorithm. The heating power allocation was correlated with heat sink maps and contrast-enhanced MRI images. The temporal change in perfusion was estimated based on the power required to maintain hyperthermia. RESULTS: The controller performed well throughout the treatments with an absolute average tracking error of 0.27 ± 0.15 °C and an average difference of 1.25 ± 0.22 °C between T10 and T90. The MPC algorithm allocates additional heating power to sub-volumes with elevated heat sink effects, which are colocalized with blood vessels visible on contrast-enhanced MRI. The perfusion appeared to have increased by at least a factor of ∼1.86 on average. CONCLUSIONS: The MPC controller generates temperature distributions with a narrow spectrum of voxel temperatures inside the target ROI despite the presence of spatiotemporally heterogeneous perfusion due to the rapid thermometry feedback available with MR-HIFU and the flexible allocation of heating power. The visualization of spatiotemporally heterogeneous perfusion presents new research opportunities for the investigation of stimulated perfusion in hypoxic tumor regions.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Hipertermia Inducida , Algoritmos , Animales , Hipertermia , Imagen por Resonancia Magnética , Perfusión , Porcinos
3.
Int J Hyperthermia ; 36(1): 1040-1050, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31621435

RESUMEN

Purpose: In local hyperthermia, precise temperature control throughout the entire target region is key for swift, safe, and effective treatment. In this article, we present a model predictive control (MPC) algorithm providing voxel-level temperature control in magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) and assess the improvement in performance it provides over the current state of the art. Materials and methods: The influence of model detail on the prediction quality and runtime of the controller is evaluated and a tissue mimicking phantom is characterized using the resulting model. Next, potential problems arising from modeling errors are evaluated in silico and in the characterized phantom. Finally, the controller's performance is compared to the current state-of-the-art hyperthermia controller in side-by-side experiments. Results: Modeling diffusion by heat exchange between four neighboring voxels achieves high predictive performance and results in runtimes suited for real-time control. Erroneous model parameters deteriorate the MPC's performance. Using models derived from thermometry data acquired during low powered test sonications, however, high control performance is achieved. In a direct comparison with the state-of-the-art hyperthermia controller, the MPC produces smaller tracking errors and tighter temperature distributions, both in a homogeneous target and near a localized heat sink. Conclusion: Using thermal models deduced from low-powered test sonications, the proposed MPC algorithm provides good performance in phantoms. In direct comparison to the current state-of-the-art hyperthermia controller, MPC performs better due to the more finely tuned heating patterns and therefore constitutes an important step toward stable, uniform hyperthermia.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Hipertermia Inducida/métodos , Imagen por Resonancia Magnética/métodos , Femenino , Humanos , Masculino
4.
IEEE Open J Eng Med Biol ; 5: 99-106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38445240

RESUMEN

Hyperthermia treatment consists of elevating the temperature of the tumor to increase the effectiveness of radiotherapy and chemotherapy. Hyperthermia treatment planning (HTP) is an important tool to optimize treatment quality using pre-treatment temperature predictions. The accuracy of these predictions depends on modeling uncertainties such as tissue properties and positioning. In this study, we evaluated if HTP accuracy improves when the patient is imaged inside the applicator at the start of treatment. Because perfusion is a major uncertainty source, the importance of accurate treatment position and anatomy was evaluated using different perfusion values. Volunteers were scanned using MR imaging without ("planning setup") and with the MR-compatible hyperthermia device ("treatment setup"). Temperature-based quality indicators were used to assess the differences between the standard, apparent and the optimized hyperthermia dose. We conclude that pre-treatment imaging can improve HTP predictions accuracy but also, that tissue perfusion modelling is crucial if temperature-based optimization is applied.

5.
Med Phys ; 49(8): 4955-4970, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35717578

RESUMEN

BACKGROUND: During resonance frequency (RF) hyperthermia treatment, the temperature of the tumor tissue is elevated to the range of 39-44°C. Accurate temperature monitoring is essential to guide treatments and ensure precise heat delivery and treatment quality. Magnetic resonance (MR) thermometry is currently the only clinical method to measure temperature noninvasively in a volume during treatment. However, several studies have shown that this approach is not always sufficiently accurate for thermal dosimetry in areas with motion, such as the pelvic region. Model-based temperature estimation is a promising approach to correct and supplement 3D online temperature estimation in regions where MR thermometry is unreliable or cannot be measured. However, complete 3D temperature modeling of the pelvic region is too complex for online usage. PURPOSE: This study aimed to evaluate the use of proper orthogonal decomposition (POD) model reduction combined with Kalman filtering to improve temperature estimation using MR thermometry. Furthermore, we assessed the benefit of this method using data from hyperthermia treatment where there were limited and unreliable MR thermometry measurements. METHODS: The performance of POD-Kalman filtering was evaluated in several heating experiments and for data from patients treated for locally advanced cervical cancer. For each method, we evaluated the mean absolute error (MAE) concerning the temperature measurements acquired by the thermal probes, and we assessed the reproducibility and consistency using the standard deviation of error (SDE). Furthermore, three patient groups were defined according to susceptibility artifacts caused by the level of intestinal gas motion to assess if the POD-Kalman filtering could compensate for missing and unreliable MR thermometry measurements. RESULTS: First, we showed that this method is beneficial and reproducible in phantom experiments. Second, we demonstrated that the combined method improved the match between temperature prediction and temperature acquired by intraluminal thermometry for patients treated for locally advanced cervical cancer. Considering all patients, the POD-Kalman filter improved MAE by 43% (filtered MR thermometry = 1.29°C, POD-Kalman filtered temperature = 0.74°C). Moreover, the SDE was improved by 47% (filtered MR thermometry = 1.16°C, POD-Kalman filtered temperature = 0.61°C). Specifically, the POD-Kalman filter reduced the MAE by approximately 60% in patients whose MR thermometry was unreliable because of the great amount of susceptibilities caused by the high level of intestinal gas motion. CONCLUSIONS: We showed that the POD-Kalman filter significantly improved the accuracy of temperature monitoring compared to MR thermometry in heating experiments and hyperthermia treatments. The results demonstrated that POD-Kalman filtering can improve thermal dosimetry during RF hyperthermia treatment, especially when MR thermometry is inaccurate.


Asunto(s)
Hipertermia Inducida , Termometría , Neoplasias del Cuello Uterino , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Reproducibilidad de los Resultados , Temperatura , Termometría/métodos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/terapia
6.
Philos Trans A Math Phys Eng Sci ; 368(1930): 4937-60, 2010 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-20921005

RESUMEN

Wherever continuous and discrete dynamics interact, hybrid systems arise. This is especially the case in many technological systems in which logic decision-making and embedded control actions are combined with continuous physical processes. Also for many mechanical, biological, electrical and economical systems the use of hybrid models is essential to adequately describe their behaviour. To capture the evolution of these systems, mathematical models are needed that combine in one way or another the dynamics of the continuous parts of the system with the dynamics of the logic and discrete parts. These mathematical models come in all kinds of variations, but basically consist of some form of differential or difference equations on the one hand and automata or other discrete-event models on the other hand. The collection of analysis and synthesis techniques based on these models forms the research area of hybrid systems theory, which plays an important role in the multi-disciplinary design of many technological systems that surround us. This paper presents an overview from the perspective of the control community on modelling, analysis and control design for hybrid dynamical systems and surveys the major research lines in this appealing and lively research area.


Asunto(s)
Modelos Teóricos , Dinámicas no Lineales , Teoría de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA