Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Environ Sci Technol ; 58(19): 8510-8517, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38695484

RESUMEN

Anthropogenic activities have fundamentally changed the chemistry of the Baltic Sea. According to results reported in this study, not even the thallium (Tl) isotope cycle is immune to these activities. In the anoxic and sulfidic ("euxinic") East Gotland Basin today, Tl and its two stable isotopes are cycled between waters and sediments as predicted based on studies of other redox-stratified basins (e.g., the Black Sea and Cariaco Trench). The Baltic seawater Tl isotope composition (ε205Tl) is, however, higher than predicted based on the results of conservative mixing calculations. Data from a short sediment core from East Gotland Basin demonstrates that this high seawater ε205Tl value originated sometime between about 1940 and 1947 CE, around the same time other prominent anthropogenic signatures begin to appear in the same core. This juxtaposition is unlikely to be coincidental and suggests that human activities in the surrounding area have altered the seawater Tl isotope mass-balance of the Baltic Sea.


Asunto(s)
Sedimentos Geológicos , Océanos y Mares , Agua de Mar , Talio , Agua de Mar/química , Sedimentos Geológicos/química , Actividades Humanas , Humanos , Monitoreo del Ambiente , Contaminantes Químicos del Agua , Isótopos
3.
Appl Environ Microbiol ; 82(8): 2527-36, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26896131

RESUMEN

UNLABELLED: A chemolithoautotrophic strain of the family Beggiatoaceae, Beggiatoa sp. strain 35Flor, was found to oxidize molecular hydrogen when grown in a medium with diffusional gradients of oxygen, sulfide, and hydrogen. Microsensor profiles and rate measurements suggested that the strain oxidized hydrogen aerobically when oxygen was available, while hydrogen consumption under anoxic conditions was presumably driven by sulfur respiration.Beggiatoa sp. 35Flor reached significantly higher biomass in hydrogen-supplemented oxygen-sulfide gradient media, but hydrogen did not support growth of the strain in the absence of reduced sulfur compounds. Nevertheless, hydrogen oxidation can provide Beggiatoa sp. 35Flor with energy for maintenance and assimilatory purposes and may support the disposal of internally stored sulfur to prevent physical damage resulting from excessive sulfur accumulation. Our knowledge about the exposure of natural populations of Beggiatoa ceae to hydrogen is very limited, but significant amounts of hydrogen could be provided by nitrogen fixation, fermentation, and geochemical processes in several of their typical habitats such as photosynthetic microbial mats and submarine sites of hydrothermal fluid flow. IMPORTANCE: Reduced sulfur compounds are certainly the main electron donors for chemolithoautotrophic Beggiatoa ceae, but the traditional focus on this topic has left other possible inorganic electron donors largely unexplored. In this paper, we provide evidence that hydrogen oxidation has the potential to strengthen the ecophysiological plasticity of Beggiatoa ceaein several ways. Moreover, we show that hydrogen oxidation by members of this family can significantly influence biogeochemical gradients and therefore should be considered in environmental studies.


Asunto(s)
Beggiatoa/metabolismo , Crecimiento Quimioautotrófico , Hidrógeno/metabolismo , Aerobiosis , Anaerobiosis , Beggiatoa/crecimiento & desarrollo , Biomasa , Medios de Cultivo/química , Oxidación-Reducción , Sulfuros/metabolismo
4.
Appl Environ Microbiol ; 81(10): 3518-28, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25769826

RESUMEN

Phosphorus is a vital nutrient for living organisms and is obtained by bacteria primarily via phosphate uptake. However, phosphate is often scarcely accessible in nature, and there is evidence that in many areas of the ocean, its concentration limits bacterial growth. Surprisingly, the phosphate starvation response has been extensively investigated in different model organisms (e.g., Escherichia coli), but there is a dearth of studies on heterotrophic marine bacteria. In this work, we describe the response of Pseudovibrio sp. strain FO-BEG1, a metabolically versatile alphaproteobacterium and potential symbiont of marine sponges, to phosphate limitation. We compared the physiology, protein expression, and secondary metabolite production under phosphate-limited conditions to those under phosphate surplus conditions. We observed that phosphate limitation had a pleiotropic effect on the physiology of the strain, triggering cell elongation, the accumulation of polyhydroxyalkanoate, the degradation of polyphosphate, and the exchange of membrane lipids in favor of phosphorus-free lipids such as sulfoquinovosyl diacylglycerols. Many proteins involved in the uptake and degradation of phospho-organic compounds were upregulated, together with subunits of the ABC transport system for phosphate. Under conditions of phosphate limitation, FO-BEG1 secreted compounds into the medium that conferred an intense yellow coloration to the cultures. Among these compounds, we identified the potent antibiotic tropodithietic acid. Finally, toxin-like proteins and other proteins likely involved in the interaction with the eukaryotic host were also upregulated. Altogether, our data suggest that phosphate limitation leads to a pronounced reorganization of FO-BEG1 physiology, involving phosphorus, carbon, and sulfur metabolism; cell morphology; secondary metabolite production; and the expression of virulence-related genes.


Asunto(s)
Proteínas Bacterianas/genética , Fosfatos/metabolismo , Rhodobacteraceae/metabolismo , Metabolismo Secundario , Factores de Virulencia/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Rhodobacteraceae/genética , Factores de Virulencia/metabolismo
5.
Proc Natl Acad Sci U S A ; 109(11): 4203-8, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22371583

RESUMEN

The gene encoding the small subunit rRNA serves as a prominent tool for the phylogenetic analysis and classification of Bacteria and Archaea owing to its high degree of conservation and its fundamental function in living organisms. Here we show that the 16S rRNA genes of not-yet-cultivated large sulfur bacteria, among them the largest known bacterium Thiomargarita namibiensis, regularly contain numerous self-splicing introns of variable length. The 16S rRNA genes can thus be enlarged to up to 3.5 kb. Remarkably, introns have never been identified in bacterial 16S rRNA genes before, although they are the most frequently sequenced genes today. This may be caused in part by a bias during the PCR amplification step that discriminates against longer homologs, as we show experimentally. Such length heterogeneity of 16S rRNA genes has so far never been considered when constructing 16S rRNA-based clone libraries, even though an elongation of rRNA genes due to intervening sequences has been reported previously. The detection of elongated 16S rRNA genes has profound implications for common methods in molecular ecology and may cause systematic biases in several techniques. In this study, catalyzed reporter deposition-fluorescence in situ hybridization on both ribosomes and rRNA precursor molecules as well as in vitro splicing experiments were performed and confirmed self-splicing of the introns. Accordingly, the introns do not inhibit the formation of functional ribosomes.


Asunto(s)
Bacterias/genética , Intrones/genética , ARN Ribosómico 16S/genética , Autoempalme del ARN Ribosómico/genética , Azufre/metabolismo , Secuencia de Bases , Hibridación Fluorescente in Situ , Datos de Secuencia Molecular , Mutagénesis Insercional/genética , Conformación de Ácido Nucleico , Reacción en Cadena de la Polimerasa , Precursores del ARN/genética , ARN Ribosómico 16S/química , Ribosomas/genética
6.
Environ Microbiol ; 15(7): 2095-113, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23601235

RESUMEN

The majority of strains belonging to the genus Pseudovibrio have been isolated from marine invertebrates such as tunicates, corals and particularly sponges, but the physiology of these bacteria is poorly understood. In this study, we analyse for the first time the genomes of two Pseudovibrio strains - FO-BEG1 and JE062. The strain FO-BEG1 is a required symbiont of a cultivated Beggiatoa strain, a sulfide-oxidizing, autotrophic bacterium, which was initially isolated from a coral. Strain JE062 was isolated from a sponge. The presented data show that both strains are generalistic bacteria capable of importing and oxidizing a wide range of organic and inorganic compounds to meet their carbon, nitrogen, phosphorous and energy requirements under both, oxic and anoxic conditions. Several physiological traits encoded in the analysed genomes were verified in laboratory experiments with both isolates. Besides the versatile metabolic abilities of both Pseudovibrio strains, our study reveals a number of open reading frames and gene clusters in the genomes that seem to be involved in symbiont-host interactions. Both Pseudovibrio strains have the genomic potential to attach to host cells, interact with the eukaryotic cell machinery, produce secondary metabolites and supply the host with cofactors.


Asunto(s)
Genoma Bacteriano/genética , Rhodobacteraceae/fisiología , Simbiosis , Animales , Carbono/metabolismo , Transferencia de Gen Horizontal/genética , Nitrógeno/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Rhodobacteraceae/clasificación , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo
7.
Environ Microbiol ; 14(11): 2911-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22925165

RESUMEN

We show that the nitrate storing vacuole of the sulfide-oxidizing bacterium Candidatus Allobeggiatoa halophila has an electron transport chain (ETC), which generates a proton motive force (PMF) used for cellular energy conservation. Immunostaining by antibodies showed that cytochrome c oxidase, an ETC protein and a vacuolar ATPase are present in the vacuolar membrane and cytochrome c in the vacuolar lumen. The effect of different inhibitors on the vacuolar pH was studied by pH imaging. Inhibition of vacuolar ATPases and pyrophosphatases resulted in a pH decrease in the vacuole, showing that the proton gradient over the vacuolar membrane is used for ATP and pyrophosphate generation. Blockage of the ETC decreased the vacuolar PMF, indicating that the proton gradient is build up by an ETC. Furthermore, addition of nitrate resulted in an increase of the vacuolar PMF. Inhibition of nitrate reduction, led to a decreased PMF. Nitric oxide was detected in vacuoles of cells exposed to nitrate showing that nitrite, the product of nitrate reduction, is reduced inside the vacuole. These findings show consistently that nitrate respiration contributes to the high proton concentration within the vacuole and the PMF over the vacuolar membrane is actively used for energy conservation.


Asunto(s)
Metabolismo Energético , Gammaproteobacteria/metabolismo , Membranas Intracelulares/metabolismo , Nitratos/metabolismo , Vacuolas/metabolismo , Difosfatos/metabolismo , Transporte de Electrón , Gammaproteobacteria/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/enzimología
8.
Antonie Van Leeuwenhoek ; 101(2): 347-57, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21909788

RESUMEN

Sulfide-oxidizing bacteria of the genus Beggiatoa are known to accumulate phosphate intracellularly as polyphosphate but little is known about the structure and properties of these inclusions. Application of different staining techniques revealed the presence of unusually large polyphosphate inclusions in the marine Beggiatoa strain 35Flor. The inclusions showed a co-occurrence of polyphosphate, calcium and magnesium when analyzed by scanning electron microscopy and energy dispersive X-ray analysis. Similar to polyphosphate-enriched acidocalcisomes of prokaryotes and eukaryotes, the polyphosphate inclusions in Beggiatoa strain 35Flor are enclosed by a lipid layer and store cations. However, they are not notably acidic. 16S rRNA gene sequence-based phylogenetic reconstruction showed an affiliation of Beggiatoa strain 35Flor to a monophyletic branch, comprising other narrow vacuolated and non-vacuolated Beggiatoa species. The polyphosphate inclusions represent a new type of membrane surrounded storage compartment within the genus Beggiatoa, distinct from the mostly nitrate-storing vacuoles known from other marine sulfide-oxidizing bacteria of the family Beggiatoaceae.


Asunto(s)
Beggiatoa/aislamiento & purificación , Beggiatoa/metabolismo , Cuerpos de Inclusión/metabolismo , Polifosfatos/metabolismo , Agua de Mar/microbiología , Beggiatoa/clasificación , Beggiatoa/genética , ADN Bacteriano/genética , ADN Ribosómico/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética
9.
Syst Appl Microbiol ; 44(1): 126155, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33278714

RESUMEN

Species of the genus Sulfurimonas are reported and isolated from terrestrial habitats and marine sediments and water columns with steep redox gradients. Here we report on the isolation of strains SoZ1 and GD2 from the pelagic redoxcline of the Black Sea and the Baltic Sea, respectively. Both strains are gram-stain-negative and appear as short and slightly curved motile rods. The autecological preferences for growth of strain SoZ1 were 0-25°C (optimum 20°C), pH 6.5-9.0 (optimum pH 7.5-8.0) and salinity 10-40gL-1 (optimum 25gL-1). Preferences for growth of strain GD2 were 0-20°C (optimum 15°C), pH 7.0-8.0 (optimum pH 7.0-7.5) and salinity 5-40gL-1 (optimum 21gL-1). Strain SoZ1 grew chemolithoautotrophically, while strain GD2 also showed heterotrophic growth with short chained fatty acids as carbon source. Both species utilized hydrogen (H2), sulfide (H2S here taken as the sum of H2S, HS- and S2-), elemental sulfur (S0) and thiosulfate (S2O32-) as electron donors and nitrate (NO3-), oxygen (O2) and particulate manganese oxide (MnO2) as electron acceptors. Based on 16S rRNA gene sequence similarity, both strains cluster within the genus Sulfurimonas with Sulfurimonas gotlandica GD1T as the closest cultured relative species with a sequence similarity of 96.74% and 96.41% for strain SoZ1 and strain GD2, respectively. Strains SoZ1 and GD2 share a ribosomal 16S sequence similarity of 99.27% and were demarcated based on average nucleotide identity and average amino acid identity of the whole genome sequence. These calculations have been applied to the whole genus. We propose the names Candidatus Sulfurimonas marisnigri sp. nov. and Candidatus Sulfurimonas baltica sp. nov. for the thiotrophic manganese reducing culture isolates from the Black Sea and Baltic Sea, respectively.


Asunto(s)
Campylobacteraceae/clasificación , Compuestos de Manganeso/metabolismo , Óxidos/metabolismo , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Mar Negro , Campylobacteraceae/aislamiento & purificación , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Bacterias Reductoras del Azufre/clasificación , Bacterias Reductoras del Azufre/aislamiento & purificación , Microbiología del Agua
10.
PLoS One ; 16(1): e0244877, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33411722

RESUMEN

BACKGROUND: Digital devices and wearables allow for the measurement of a wide range of health-related parameters in a non-invasive manner, which may be particularly valuable in pediatrics. Incorporation of such parameters in clinical trials or care as digital endpoint could reduce the burden for children and their parents but requires clinical validation in the target population. This study aims to determine the tolerability, repeatability, and reference values of novel digital endpoints in healthy children. METHODS: Apparently healthy children (n = 175, 46% male) aged 2-16 were included. Subjects were monitored for 21 days using a home-monitoring platform with several devices (smartwatch, spirometer, thermometer, blood pressure monitor, scales). Endpoints were analyzed with a mixed effects model, assessing variables that explained within- and between-subject variability. Endpoints based on physical activity, heart rate, and sleep-related parameters were included in the analysis. For physical-activity-related endpoints, a sample size needed to detect a 15% increase was calculated. FINDINGS: Median compliance was 94%. Variability in each physical activity-related candidate endpoint was explained by age, sex, watch wear time, rain duration per day, average ambient temperature, and population density of the city of residence. Estimated sample sizes for candidate endpoints ranged from 33-110 per group. Daytime heart rate, nocturnal heart rate and sleep duration decreased as a function of age and were comparable to reference values published in the literature. CONCLUSIONS: Wearable- and portable devices are tolerable for pediatric subjects. The raw data, models and reference values presented here can be used to guide further validation and, in the future, clinical trial designs involving the included measures.


Asunto(s)
Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Adolescente , Niño , Preescolar , Ejercicio Físico/fisiología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Cooperación del Paciente , Valores de Referencia , Reproducibilidad de los Resultados , Sueño/fisiología , Dispositivos Electrónicos Vestibles/tendencias
11.
ISME J ; 13(5): 1198-1208, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30643197

RESUMEN

The Black Sea is the world's largest anoxic basin and a model system for studying processes across redox gradients. In between the oxic surface and the deeper sulfidic waters there is an unusually broad layer of 10-40 m, where neither oxygen nor sulfide are detectable. In this suboxic zone, dissolved phosphate profiles display a pronounced minimum at the upper and a maximum at the lower boundary, with a peak of particulate phosphorus in between, which was suggested to be caused by the sorption of phosphate on sinking particles of metal oxides. Here we show that bacterial polyphosphate inclusions within large magnetotactic bacteria related to the genus Magnetococcus contribute substantially to the observed phosphorus peak, as they contain 26-34% phosphorus compared to only 1-5% in metal-rich particles. Furthermore, we found increased gene expression for polyphosphate kinases by several groups of bacteria including Magnetococcaceae at the phosphate maximum, indicating active bacterial polyphosphate degradation. We propose that large magnetotactic bacteria shuttle up and down within the suboxic zone, scavenging phosphate at the upper and releasing it at the lower boundary. In contrast to a passive transport via metal oxides, this bacterial transport can quantitatively explain the observed phosphate profiles.


Asunto(s)
Alphaproteobacteria/metabolismo , Polifosfatos/metabolismo , Agua de Mar/química , Agua de Mar/microbiología , Alphaproteobacteria/genética , Mar Negro , Fenómenos Magnéticos , Fosfatos/análisis , Fósforo/análisis , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo
12.
mSphere ; 3(6)2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30567898

RESUMEN

Here we report on a new nanoscale secondary ion mass spectrometry (nanoSIMS) approach based on enzyme-mediated oxygen isotope exchange, which combines the visualization of general metabolic activity in the cytoplasm with insights into the activity of enzymes related to polyphosphate (polyP) inclusions. The polyP-accumulating strain of the large sulfur bacterium Beggiatoa was used as a model organism. Beggiatoa cultures were grown under oxic and anoxic conditions when exposed to either low- or high-sulfide conditions, which are known to influence polyP metabolism in this strain. Subsequent incubation with 18O-labeled water led to high 18O enrichments above the natural background in the cytoplasm and polyP granules derived from enzymatically mediated oxygen isotope exchange. The relative importance of polyP under the different sulfide regimes became evident by an apparent continued metabolic activity at polyP inclusions under stressfully high sulfide concentrations, in contrast to a decreased general metabolic activity in the cytoplasm. This finding confirms the role of polyP as a critical component in bacterial stress response and maintenance of a survival metabolism.IMPORTANCE Microbial organisms exert a large influence on the environment as they directly affect the turnover of essential elements. This is particularly true for polyphosphate-accumulating large sulfur bacteria, which can either accumulate phosphate as polyphosphate or degrade it and release phosphate into the environment, depending on environmental conditions. This study presents a new approach to simultaneously visualize general metabolic activity and enzymatic activity at polyphosphate granules by incubation with 18O-labeled water as the only stable isotope tracer. For this purpose, the well-studied Beggiatoa sp. strain 35Flor was used as a model organism and was exposed to different stress regimes. General metabolic activity was strongly impaired during high-stress regimes. In contrast, intense intracellular polyP cycling was not restricted to favorable or stressful conditions, highlighting the importance of polyP for general cell physiology, especially during hostile conditions. The nanoSIMS approach adds a new tool to study microorganisms involved in phosphorus cycling in the environment together with the identification of general metabolic activity.


Asunto(s)
Beggiatoa/enzimología , Citoplasma/enzimología , Enzimas/análisis , Cuerpos de Inclusión/enzimología , Marcaje Isotópico , Isótopos de Oxígeno/metabolismo , Espectrometría de Masa de Ion Secundario/métodos , Polifosfatos/análisis
13.
Sci Rep ; 8(1): 5651, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618756

RESUMEN

The cyanobacterium Nodularia spumigena is a species that frequently forms blooms in the Baltic Sea. Accumulation of the vital nutrient phosphorus (P) apparently plays an important role in the ability of this and other cyanobacteria to grow even when dissolved inorganic phosphorus is depleted. However, until now, this has not been studied in N. spumigena at the cellular level. Therefore, in this study, phosphorus incorporation and distribution in cyanobacterial filaments over time was examined by scanning electron microscopy in combination with energy dispersive X-ray analysis (SEM/EDX) and nanoscale secondary ion mass spectrometry (NanoSIMS). Immediately after phosphate addition to a phosphorus-depleted population, the phosphate concentration decreased in the water while intracellular polyphosphate accumulated. Microscopically, phosphorus in form of polyphosphate granules was stored preferentially in vegetative cells, whereas heterocysts remained low in intracellular phosphorus. This information is an essential step towards understanding the phosphorus dynamics of this species and demonstrates that the division of tasks between vegetative cells and heterocysts is not restricted to nitrogen fixation.


Asunto(s)
Fijación del Nitrógeno , Nodularia/metabolismo , Nodularia/fisiología , Fósforo/metabolismo , Fotosíntesis , Plancton/microbiología , Océanos y Mares
14.
Front Microbiol ; 8: 364, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28352252

RESUMEN

Phosphorus is an essential nutrient for all living organisms. In bacteria, the preferential phosphorus source is phosphate, which is often a limiting macronutrient in many areas of the ocean. The geochemical cycle of phosphorus is strongly interconnected with the cycles of other elements and especially iron, because phosphate tends to adsorb onto iron minerals, such as iron oxide formed in oxic marine environments. Although the response to either iron or phosphate limitation has been investigated in several bacterial species, the metabolic interplay between these two nutrients has rarely been considered. In this study we evaluated the impact of phosphate limitation on the iron metabolism of the marine bacterium Pseudovibrio sp. FO-BEG1. We observed that phosphate limitation led to an initial decrease of soluble iron in the culture up to three times higher than under phosphate surplus conditions. Similarly, a decrease in soluble cobalt was more pronounced under phosphate limitation. These data point toward physiological changes induced by phosphate limitation that affect either the cellular surface and therefore the metal adsorption onto it or the cellular metal uptake. We discovered that under phosphate limitation strain FO-BEG1, as well as selected strains of the Roseobacter clade, secreted iron-chelating molecules. This leads to the hypothesis that these bacteria might release such molecules to dissolve iron minerals, such as iron-oxyhydroxide, in order to access the adsorbed phosphate. As the adsorption of phosphate onto iron minerals can significantly decrease phosphate concentrations in the environment, the observed release of iron-chelators might represent an as yet unrecognized link between the biogeochemical cycle of phosphorus and iron, and it suggests another biological function of iron-chelating molecules in addition to metal-scavenging.

15.
Front Microbiol ; 7: 964, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27446006

RESUMEN

Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 µm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiomargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of a chain-forming "Candidatus Thiomargarita nelsonii Thio36", and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. "Ca. T. nelsonii Thio36" is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that "Ca. T. nelsonii Thio36" can function as a chemolithoautotroph. Carbon can be fixed via the Calvin-Benson-Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO2 fixation pathway. Surprisingly, "Ca. T. nelsonii Thio36" also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na(+)-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae "Ca. T. nelsonii Thio36" encodes many genes similar to those of (filamentous) cyanobacteria. In summary, the genome of "Ca. T. nelsonii Thio36" provides additional insight into the ecology of giant sulfur-oxidizing bacteria, and reveals unique genomic features for the Thiomargarita lineage within the Beggiatoaceae.

16.
PLoS One ; 10(3): e0121675, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826215

RESUMEN

Marine planktonic bacteria often live in habitats with extremely low concentrations of dissolved organic matter (DOM). To study the use of trace amounts of DOM by the facultatively oligotrophic Pseudovibrio sp. FO-BEG1, we investigated the composition of artificial and natural seawater before and after growth. We determined the concentrations of dissolved organic carbon (DOC), total dissolved nitrogen (TDN), free and hydrolysable amino acids, and the molecular composition of DOM by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The DOC concentration of the artificial seawater we used for cultivation was 4.4 µmol C L(-1), which was eight times lower compared to the natural oligotrophic seawater we used for parallel experiments (36 µmol C L(-1)). During the three-week duration of the experiment, cell numbers increased from 40 cells mL(-1) to 2x10(4) cells mL(-1) in artificial and to 3x10(5) cells mL(-1) in natural seawater. No nitrogen fixation and minor CO2 fixation (< 1% of cellular carbon) was observed. Our data show that in both media, amino acids were not the main substrate for growth. Instead, FT-ICR-MS analysis revealed usage of a variety of different dissolved organic molecules, belonging to a wide range of chemical compound groups, also containing nitrogen. The present study shows that marine heterotrophic bacteria are able to proliferate with even lower DOC concentrations than available in natural ultra-oligotrophic seawater, using unexpected organic compounds to fuel their energy, carbon and nitrogen requirements.


Asunto(s)
Rhodobacteraceae/metabolismo , Agua de Mar , Recuento de Colonia Microbiana , Medios de Cultivo , Ciclotrones , Rhodobacteraceae/crecimiento & desarrollo , Extracción en Fase Sólida , Solubilidad , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de Fourier
17.
PLoS One ; 9(5): e96038, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24787987

RESUMEN

Oceanic dissolved organic matter (DOM) is an assemblage of reduced carbon compounds, which results from biotic and abiotic processes. The biotic processes consist in either release or uptake of specific molecules by marine organisms. Heterotrophic bacteria have been mostly considered to influence the DOM composition by preferential uptake of certain compounds. However, they also secrete a variety of molecules depending on physiological state, environmental and growth conditions, but so far the full set of compounds secreted by these bacteria has never been investigated. In this study, we analyzed the exo-metabolome, metabolites secreted into the environment, of the heterotrophic marine bacterium Pseudovibrio sp. FO-BEG1 via ultra-high resolution mass spectrometry, comparing phosphate limited with phosphate surplus growth conditions. Bacteria belonging to the Pseudovibrio genus have been isolated worldwide, mainly from marine invertebrates and were described as metabolically versatile Alphaproteobacteria. We show that the exo-metabolome is unexpectedly large and diverse, consisting of hundreds of compounds that differ by their molecular formulae. It is characterized by a dynamic recycling of molecules, and it is drastically affected by the physiological state of the strain. Moreover, we show that phosphate limitation greatly influences both the amount and the composition of the secreted molecules. By assigning the detected masses to general chemical categories, we observed that under phosphate surplus conditions the secreted molecules were mainly peptides and highly unsaturated compounds. In contrast, under phosphate limitation the composition of the exo-metabolome changed during bacterial growth, showing an increase in highly unsaturated, phenolic, and polyphenolic compounds. Finally, we annotated the detected masses using multiple metabolite databases. These analyses suggested the presence of several masses analogue to masses of known bioactive compounds. However, the annotation was successful only for a minor part of the detected molecules, underlining the current gap in knowledge concerning the biosynthetic ability of marine heterotrophic bacteria.


Asunto(s)
Espectrometría de Masas , Metabolómica , Fosfatos/farmacología , Rhodobacteraceae/efectos de los fármacos , Rhodobacteraceae/metabolismo , Relación Dosis-Respuesta a Droga , Compuestos Orgánicos/metabolismo , Rhodobacteraceae/crecimiento & desarrollo
18.
ISME J ; 5(3): 497-506, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20827290

RESUMEN

Sulfur bacteria such as Beggiatoa or Thiomargarita have a particularly high capacity for storage because of their large size. In addition to sulfur and nitrate, these bacteria also store phosphorus in the form of polyphosphate. Thiomargarita namibiensis has been shown to release phosphate from internally stored polyphosphate in pulses creating steep peaks of phosphate in the sediment and thereby inducing the precipitation of phosphorus-rich minerals. Large sulfur bacteria populate sediments at the sites of recent phosphorite formation and are found as fossils in ancient phosphorite deposits. Therefore, it can be assumed that this physiology contributes to the removal of bioavailable phosphorus from the marine system and thus is important for the global phosphorus cycle. We investigated under defined laboratory conditions which parameters stimulate the decomposition of polyphosphate and the release of phosphate in a marine Beggiatoa strain. Initially, we tested phosphate release in response to anoxia and high concentrations of acetate, because acetate is described as the relevant stimulus for phosphate release in activated sludge. To our surprise, the Beggiatoa strain did not release phosphate in response to this treatment. Instead, we could clearly show that increasing sulfide concentrations and anoxia resulted in a decomposition of polyphosphate. This physiological reaction is a yet unknown mode of bacterial polyphosphate usage and provides a new explanation for high phosphate concentrations in sulfidic marine sediments.


Asunto(s)
Beggiatoa/metabolismo , Sedimentos Geológicos/microbiología , Fosfatos/metabolismo , Polifosfatos/metabolismo , Sulfuros/farmacología , Beggiatoa/efectos de los fármacos , Beggiatoa/crecimiento & desarrollo , Ácidos Grasos/farmacología , Azufre/metabolismo
19.
Front Microbiol ; 2: 276, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22291687

RESUMEN

The chemolithoautotrophic strain Beggiatoa sp. 35Flor shows an unusual migration behavior when cultivated in a gradient medium under high sulfide fluxes. As common for Beggiatoa spp., the filaments form a mat at the oxygen-sulfide interface. However, upon prolonged incubation, a subpopulation migrates actively downward into the anoxic and sulfidic section of the medium, where the filaments become gradually depleted in their sulfur and polyhydroxyalkanoates (PHA) inclusions. This depletion is correlated with the production of hydrogen sulfide. The sulfur- and PHA-depleted filaments return to the oxygen-sulfide interface, where they switch back to depositing sulfur and PHA by aerobic sulfide oxidation. Based on these observations we conclude that internally stored elemental sulfur is respired at the expense of stored PHA under anoxic conditions. Until now, nitrate has always been assumed to be the alternative electron acceptor in chemolithoautotrophic Beggiatoa spp. under anoxic conditions. As the medium and the filaments were free of oxidized nitrogen compounds we can exclude this metabolism. Furthermore, sulfur respiration with PHA under anoxic conditions has so far only been described for heterotrophic Beggiatoa spp., but our medium did not contain accessible organic carbon. Hence the PHA inclusions must originate from atmospheric CO(2) fixed by the filaments while at the oxygen-sulfide interface. We propose that the directed migration of filaments into the anoxic section of an oxygen-sulfide gradient system is used as a last resort to preserve cell integrity, which would otherwise be compromised by excessive sulfur deposition occurring in the presence of oxygen and high sulfide fluxes. The regulating mechanism of this migration is still unknown.

20.
ISME J ; 5(12): 1926-35, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21697959

RESUMEN

We present evidence for a dimorphic life cycle in the vacuolate sulfide-oxidizing bacteria that appears to involve the attachment of a spherical Thiomargarita-like cell to the exteriors of invertebrate integuments and other benthic substrates at methane seeps. The attached cell elongates to produce a stalk-like form before budding off spherical daughter cells resembling free-living Thiomargarita that are abundant in surrounding sulfidic seep sediments. The relationship between the attached parent cell and free-living daughter cell is reminiscent of the dimorphic life modes of the prosthecate Alphaproteobacteria, but on a grand scale, with individual elongate cells reaching nearly a millimeter in length. Abundant growth of attached Thiomargarita-like bacteria on the integuments of gastropods and other seep fauna provides not only a novel ecological niche for these giant bacteria, but also for animals that may benefit from epibiont colonization.


Asunto(s)
Sedimentos Geológicos/microbiología , Metano/metabolismo , Agua de Mar/microbiología , Thiotrichaceae/crecimiento & desarrollo , Costa Rica , Ecotipo , Filogenia , Análisis de Secuencia de ADN , Sulfuros/metabolismo , Thiotrichaceae/genética , Thiotrichaceae/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA