Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 561(7722): 189-194, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30209367

RESUMEN

Multidrug-resistant bacteria are spreading at alarming rates, and despite extensive efforts no new class of antibiotic with activity against Gram-negative bacteria has been approved in over fifty years. Natural products and their derivatives have a key role in combating Gram-negative pathogens. Here we report chemical optimization of the arylomycins-a class of natural products with weak activity and limited spectrum-to obtain G0775, a molecule with potent, broad-spectrum activity against Gram-negative bacteria. G0775 inhibits the essential bacterial type I signal peptidase, a new antibiotic target, through an unprecedented molecular mechanism. It circumvents existing antibiotic resistance mechanisms and retains activity against contemporary multidrug-resistant Gram-negative clinical isolates in vitro and in several in vivo infection models. These findings demonstrate that optimized arylomycin analogues such as G0775 could translate into new therapies to address the growing threat of multidrug-resistant Gram-negative infections.


Asunto(s)
Antibacterianos/clasificación , Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Péptidos Cíclicos/farmacología , Biocatálisis/efectos de los fármacos , Productos Biológicos/clasificación , Productos Biológicos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/enzimología , Bacterias Gramnegativas/enzimología , Bacterias Gramnegativas/patogenicidad , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/patogenicidad , Lisina/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos/química , Porinas , Unión Proteica , Dominios Proteicos , Serina Endopeptidasas , Especificidad por Sustrato
2.
Cereb Cortex ; 27(3): 2226-2248, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27005990

RESUMEN

Alterations in the balance of inhibitory and excitatory synaptic transmission have been implicated in the pathogenesis of neurological disorders such as epilepsy. Eukaryotic elongation factor 2 kinase (eEF2K) is a highly regulated, ubiquitous kinase involved in the control of protein translation. Here, we show that eEF2K activity negatively regulates GABAergic synaptic transmission. Indeed, loss of eEF2K increases GABAergic synaptic transmission by upregulating the presynaptic protein Synapsin 2b and α5-containing GABAA receptors and thus interferes with the excitation/inhibition balance. This cellular phenotype is accompanied by an increased resistance to epilepsy and an impairment of only a specific hippocampal-dependent fear conditioning. From a clinical perspective, our results identify eEF2K as a potential novel target for antiepileptic drugs, since pharmacological and genetic inhibition of eEF2K can revert the epileptic phenotype in a mouse model of human epilepsy.


Asunto(s)
Quinasa del Factor 2 de Elongación/metabolismo , Epilepsia/enzimología , Neuronas/enzimología , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/enzimología , Corteza Cerebral/patología , Condicionamiento Psicológico/fisiología , Modelos Animales de Enfermedad , Quinasa del Factor 2 de Elongación/antagonistas & inhibidores , Quinasa del Factor 2 de Elongación/genética , Epilepsia/patología , Miedo/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Hipocampo/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Neuronas/patología , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
3.
Bioorg Med Chem Lett ; 26(15): 3518-24, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27346791

RESUMEN

A series of 4-azaindole-containing p21-activated kinase-1 (PAK1) inhibitors was prepared with the goal of improving physicochemical properties relative to an indole starting point. Indole 1 represented an attractive, non-basic scaffold with good PAK1 affinity and cellular potency but was compromised by high lipophilicity (clogD=4.4). Azaindole 5 was designed as an indole surrogate with the goal of lowering logD and resulted in equipotent PAK1 inhibition with a 2-fold improvement in cellular potency over 1. Structure-activity relationship studies around 5 identified additional 4-azaindole analogs with superior PAK1 biochemical activity (Ki <10nM) and up to 24-fold selectivity for group I over group II PAKs. Compounds from this series showed enhanced permeability, improved aqueous solubility, and lower plasma protein binding over indole 1. The improvement in physicochemical properties translated to a 20-fold decrease in unbound clearance in mouse PK studies for azaindole 5 relative to indole 1.


Asunto(s)
Indoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Quinasas p21 Activadas/antagonistas & inhibidores , Animales , Perros , Relación Dosis-Respuesta a Droga , Humanos , Indoles/síntesis química , Indoles/química , Células de Riñón Canino Madin Darby , Ratones , Ratones Desnudos , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Quinasas p21 Activadas/metabolismo
4.
Bioorg Med Chem Lett ; 25(21): 4728-4732, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26338362

RESUMEN

A fragment-based lead discovery approach was used to discover novel ERK2 inhibitors. The crystal structure of N-benzyl-9H-purin-6-amine 1 in complex with ERK2 elucidated its hinge-binding mode. In addition, the simultaneous binding of an imidazole molecule adjacent to 1 suggested a direction for fragment expansion. Structure-based core hopping applied to 1 led to 5H-pyrrolo[3,2-b]pyrazine (3) that afforded direct vectors to probe the pockets of interest while retaining the essential hinge binding elements. Utilizing the new vectors for SAR exploration, the new core 3 was quickly optimized to compound 39 resulting in a greater than 6600-fold improvement in potency.


Asunto(s)
Descubrimiento de Drogas , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Pirazinas/farmacología , Pirroles/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Modelos Moleculares , Estructura Molecular , Pirazinas/síntesis química , Pirazinas/química , Pirroles/síntesis química , Pirroles/química , Relación Estructura-Actividad
5.
J Biol Chem ; 288(37): 26926-43, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23897821

RESUMEN

Histone deacetylases (HDACs) are critical in the control of gene expression, and dysregulation of their activity has been implicated in a broad range of diseases, including cancer, cardiovascular, and neurological diseases. HDAC inhibitors (HDACi) employing different zinc chelating functionalities such as hydroxamic acids and benzamides have shown promising results in cancer therapy. Although it has also been suggested that HDACi with increased isozyme selectivity and potency may broaden their clinical utility and minimize side effects, the translation of this idea to the clinic remains to be investigated. Moreover, a detailed understanding of how HDACi with different pharmacological properties affect biological functions in vitro and in vivo is still missing. Here, we show that a panel of benzamide-containing HDACi are slow tight-binding inhibitors with long residence times unlike the hydroxamate-containing HDACi vorinostat and trichostatin-A. Characterization of changes in H2BK5 and H4K14 acetylation following HDACi treatment in the neuroblastoma cell line SH-SY5Y revealed that the timing and magnitude of histone acetylation mirrored both the association and dissociation kinetic rates of the inhibitors. In contrast, cell viability and microarray gene expression analysis indicated that cell death induction and changes in transcriptional regulation do not correlate with the dissociation kinetic rates of the HDACi. Therefore, our study suggests that determining how the selective and kinetic inhibition properties of HDACi affect cell function will help to evaluate their therapeutic utility.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Inhibidores de Histona Desacetilasas/química , Histonas/química , Acetilación , Benzamidas/química , Unión Competitiva , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Ácidos Hidroxámicos/química , Concentración 50 Inhibidora , Cinética , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Piridinas/química , Transcripción Genética , Vorinostat
6.
J Neurochem ; 128(5): 603-16, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24111946

RESUMEN

Epigenetic mechanisms play important roles in brain development, orchestrating proliferation, differentiation, and morphogenesis. Lysine-Specific Demethylase 1 (LSD1 also known as KDM1A and AOF2) is a histone modifier involved in transcriptional repression, forming a stable core complex with the corepressors corepressor of REST (CoREST) and histone deacetylases (HDAC1/2). Importantly, in the mammalian CNS, neuronal LSD1-8a, an alternative splicing isoform of LSD1 including the mini-exon E8a, sets alongside LSD1 and is capable of enhancing neurite growth and morphogenesis. Here, we describe that the morphogenic properties of neuronal LSD1-8a require switching off repressive activity and this negative modulation is mediated in vivo by phosphorylation of the Thr369b residue coded by exon E8a. Three-dimensional crystal structure analysis using a phospho-mimetic mutant (Thr369bAsp), indicate that phosphorylation affects the residues surrounding the exon E8a-coded amino acids, causing a local conformational change. We suggest that phosphorylation, without affecting demethylase activity, causes in neurons CoREST and HDAC1/2 corepressors detachment from LSD1-8a and impairs neuronal LSD1-8a repressive activity. In neurons, Thr369b phosphorylation is required for morphogenic activity, converting neuronal LSD1-8a in a dominant-negative isoform, challenging LSD1-mediated transcriptional repression on target genes.


Asunto(s)
Proteínas Co-Represoras/biosíntesis , Proteínas Co-Represoras/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Histona Demetilasas/biosíntesis , Histona Demetilasas/genética , Transcripción Genética/genética , Animales , Química Encefálica/fisiología , Células Cultivadas , Cromatina/metabolismo , Represión Enzimática , Exones/genética , Regulación Enzimológica de la Expresión Génica/genética , Genes Reporteros , Inmunoprecipitación , Isoenzimas/metabolismo , Espectrometría de Masas , Mutagénesis Sitio-Dirigida , Neuritas/metabolismo , Fosforilación , Conformación Proteica , Ratas
7.
ACS Med Chem Lett ; 14(11): 1524-1530, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37974942

RESUMEN

Multidrug-resistant bacteria are spreading at alarming rates, and despite extensive efforts, no new antibiotic class with activity against Gram-negative bacteria has been approved in over 50 years. LepB inhibitors (LepBi) based on the arylomycin class of natural products are a novel class of antibiotics and function by inhibiting the bacterial type I signal peptidase (SPase) in Gram-negative bacteria. One critical aspect of LepBi development involves optimization of the membrane-anchored lipophilic portion of the molecule. We therefore developed an approach that assesses the effect of this portion on the complicated equilibria of plasma protein binding, crossing the outer membrane of Gram-negative bacteria and anchoring in the bacterial inner membrane to facilitate SPase binding. Our findings provide important insights into the development of antibacterial agents where the target is associated with the inner membrane of Gram-negative bacteria.

8.
Front Mol Neurosci ; 11: 212, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29970989

RESUMEN

Autism spectrum disorder (ASD) refers to a large set of neurodevelopmental disorders, which have in common both repetitive behavior and abnormalities in social interactions and communication. Interestingly, most forms of ASD have a strong genetic contribution. However, the molecular underpinnings of this disorder remain elusive. The SHANK3 gene (and to a lesser degree SHANK2) which encode for the postsynaptic density (PSD) proteins SHANK3/SHANK2 and the CONTACTIN 4 gene which encodes for the neuronal glycoprotein CONTACTIN4 (CNTN4) exhibit mutated variants which are associated with ASD. Like many of the other genes associated with ASD, both SHANKs and CNTN4 affect synapse formation and function and are therefore related to the proper development and signaling capability of excitatory and inhibitory neuronal networks in the adult mammal brain. In this study, we used mutant/knock-out mice of Shank2 (Shank2-/-), Shank3 (Shank3αß-/-), and Cntn4 (Cntn4-/-) as ASD-models to explore whether these mice share a molecular signature in glutamatergic and GABAergic synaptic transmission in ASD-related brain regions. Using a biotinylation assay and subsequent western blotting we focused our analysis on cell surface expression of several ionotropic glutamate and GABA receptor subunits: GluA1, GluA2, and GluN1 were analyzed for excitatory synaptic transmission, and the α1 subunit of the GABAA receptor was analyzed for inhibitory synaptic transmission. We found that both Shank2-/- and Shank3αß-/- mice exhibit reduced levels of several cell surface glutamate receptors in the analyzed brain regions-especially in the striatum and thalamus-when compared to wildtype controls. Interestingly, even though Cntn4-/- mice also show reduced levels of some cell surface glutamate receptors in the cortex and hippocampus, increased levels of cell surface glutamate receptors were found in the striatum. Moreover, Cntn4-/- mice do not only show brain region-specific alterations in cell surface glutamate receptors but also a downregulation of cell surface GABA receptors in several of the analyzed brain regions. The results of this study suggest that even though mutations in defined genes can be associated with ASD this does not necessarily result in a common molecular phenotype in surface expression of glutamatergic and GABAergic receptor subunits in defined brain regions.

9.
J Biomol Screen ; 12(2): 235-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17208923

RESUMEN

Many nonpeptide antagonists of the gonadotropin-releasing hormone (GnRH) receptor, as well as other drug targets, possess a broad range of dissociation kinetic rate constants. Current methods to accurately define kinetic rate parameters such as K(on) and K(off) are time and labor intensive, prompting the development of a screening assay to identify slowly dissociating compounds for follow-up rate constant determination. The authors measured inhibition binding constants (K(i)) for GnRH receptor antagonists after 30 min and 10 h of incubation and observed several compounds with markedly decreased K(i) values over time (Ki(30 min)/Ki(10 h) > 6). They used scintillation proximity assay technology to perform these binding experiments because this homogeneous assay does not have a fixed termination end point as does filtration binding, permitting successive readings to be taken from the same assay plate over an extended period of time. They also used a quantitative method of kinetic rate analysis to confirm that a large disparity between a compound's K(i) value at 30 min and 10 h could identify compounds that dissociate slowly. Thus, the K(i) ratio can be used to screen for and select compounds to test using more quantitative, albeit lower throughput methods to accurately define kinetic rate constants.


Asunto(s)
Receptores LHRH/metabolismo , Conteo por Cintilación/métodos , Unión Competitiva/efectos de los fármacos , Hormona Liberadora de Gonadotropina/análisis , Hormona Liberadora de Gonadotropina/metabolismo , Cinética , Ligandos , Ensayo de Unión Radioligante , Relación Estructura-Actividad
10.
Nat Commun ; 8: 14536, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262662

RESUMEN

Shrm4, a protein expressed only in polarized tissues, is encoded by the KIAA1202 gene, whose mutations have been linked to epilepsy and intellectual disability. However, a physiological role for Shrm4 in the brain is yet to be established. Here, we report that Shrm4 is localized to synapses where it regulates dendritic spine morphology and interacts with the C terminus of GABAB receptors (GABABRs) to control their cell surface expression and intracellular trafficking via a dynein-dependent mechanism. Knockdown of Shrm4 in rat severely impairs GABABR activity causing increased anxiety-like behaviour and susceptibility to seizures. Moreover, Shrm4 influences hippocampal excitability by modulating tonic inhibition in dentate gyrus granule cells, in a process involving crosstalk between GABABRs and extrasynaptic δ-subunit-containing GABAARs. Our data highlights a role for Shrm4 in synaptogenesis and in maintaining GABABR-mediated inhibition, perturbation of which may be responsible for the involvement of Shrm4 in cognitive disorders and epilepsy.


Asunto(s)
Hipocampo/metabolismo , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-B/genética , Transmisión Sináptica/genética , Animales , Giro Dentado/metabolismo , Giro Dentado/patología , Giro Dentado/ultraestructura , Embrión de Mamíferos , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/patología , Regulación de la Expresión Génica , Células HEK293 , Hipocampo/patología , Hipocampo/ultraestructura , Humanos , Inyecciones Intraventriculares , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural , Neurogénesis/genética , Neuronas/patología , Neuronas/ultraestructura , Cultivo Primario de Células , Ratas , Ratas Wistar , Receptor Cross-Talk , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Sinapsis/ultraestructura
11.
J Med Chem ; 49(13): 3753-6, 2006 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-16789729

RESUMEN

Melanin-concentrating hormone receptor antagonists containing thieno- and a benzopyridazinone cores were designed and tested as potential anorectic agents. These ligands showed high affinity for the receptor, potent functional activity in vitro, and good oral bioavailabilty in rats. The thiophene analogue exhibited low iv clearance, long half-life, and high brain penetration. In obese rats, the thienopyridazinone demonstrated a dose-dependent reduction in feeding and body weight with doses between 1 and 10 mg kg-1.


Asunto(s)
Depresores del Apetito/síntesis química , Piridazinas/síntesis química , Receptores de Somatostatina/antagonistas & inhibidores , Tiofenos/síntesis química , Animales , Depresores del Apetito/farmacocinética , Depresores del Apetito/farmacología , Disponibilidad Biológica , Peso Corporal/efectos de los fármacos , Encéfalo/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Semivida , Masculino , Obesidad/tratamiento farmacológico , Permeabilidad , Piridazinas/química , Piridazinas/farmacología , Ratas , Ratas Sprague-Dawley , Estereoisomerismo , Relación Estructura-Actividad , Tiofenos/farmacocinética , Tiofenos/farmacología
12.
Biochem Pharmacol ; 72(7): 838-49, 2006 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-16930559

RESUMEN

Numerous nonpeptide ligands have been developed for the human gonadotropin-releasing hormone (GnRH) receptor as potential agents for treatment of disorders of the reproductive-endocrine axis. While the equilibrium binding of these ligands has been studied in detail, little is known of the kinetics of their receptor interaction. In this study we evaluated the kinetic structure-activity relationships (SAR) of uracil-series antagonists by measuring their association and dissociation rate constants. These constants were measured directly using a novel radioligand, [3H] NBI 42902, and indirectly for unlabeled ligands. Receptor association and dissociation of [3H] NBI 42902 was monophasic, with an association rate constant of 93+/-10 microM(-1) min(-1) and a dissociation rate constant of 0.16+/-0.02 h(-1) (t(1/2) of 4.3 h). Four unlabeled compounds were tested with varying substituents at the 2-position of the benzyl group at position 1 of the uracil (-F, -SO(CH3), -SO2(CH3) and -CF3). The nature of the substituent did not appreciably affect the association rate constant but varied the dissociation rate constant >50-fold (t(1/2) ranging from 52 min for -SO(CH3) to >43 h for -CF3). This SAR was poorly resolved in standard competition assays due to lack of equilibration. The functional consequences of the varying dissociation rate were investigated by measuring antagonism of GnRH-stimulated [3H] inositol phosphates accumulation. Slowly dissociating ligands displayed insurmountable antagonism (decrease of the GnRH E(max)) while antagonism by more rapidly dissociating ligands was surmountable (without effect on the GnRH E(max)). Therefore, evaluating the receptor binding kinetics of nonpeptide antagonists revealed SAR, not evident in standard competition assays, that defined at least in part the mode of functional antagonism by the ligands. These findings are of importance for the future definition of nonpeptide ligand SAR and for the identification of potentially useful slowly dissociating antagonists for the GnRH receptor.


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Receptores LHRH/antagonistas & inhibidores , Uracilo/farmacología , Unión Competitiva/efectos de los fármacos , Humanos , Cinética , Ligandos , Estructura Molecular , Ensayo de Unión Radioligante/métodos , Receptores LHRH/metabolismo , Timina/análogos & derivados , Timina/metabolismo , Tritio , Uracilo/química , Uracilo/metabolismo
13.
Mol Cell Endocrinol ; 259(1-2): 1-9, 2006 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-16987592

RESUMEN

The capacity of novel benzopyridazinone-based antagonists to inhibit MCH-R1 function, relative to their affinity for the receptor, has been investigated. Three compounds that differ by the addition of either a chlorine atom, or trifluoromethyl group, have nearly identical receptor affinities; however their abilities to inhibit receptor elicited signaling events, measured as a function of time, are dramatically altered. Both the chlorinated and trifluoromethyl modified compounds have a very slow on-rate to maximal functional inhibition relative to the unmodified base compound. A similar impact on inhibitory capacity can be achieved by modifying the side-chain composition at position 2.53 of the receptor; replacement of the native phenylalanine with alanine significantly reduces the amount of time required by the chlorinated compound to attain maximal functional inhibition. The primary attribute responsible for this alteration in inhibitory capacity appears to be the overall bulk of the amino acid at this position-substitution of the similarly sized amino acids leucine and tyrosine results in phenotypes that are indistinguishable from the wild type receptor. Finally, the impact of these differential inhibitory kinetics has been examined in cultured rat neurons by measuring the ability of the compounds to reverse MCH mediated inhibition of calcium currents. As observed using the cell expression models, the chlorinated compound has a diminished capacity to interfere with receptor function. Collectively, these data suggest that differential inhibitory on rates between a small-molecule antagonist and its target receptor can impact the ability of the compound to modify the biological response(s) elicited by the receptor.


Asunto(s)
Piridazinas/química , Piridazinas/farmacocinética , Receptores de Somatostatina/antagonistas & inhibidores , Receptores de Somatostatina/metabolismo , Somatostatina/antagonistas & inhibidores , Aminoácidos/química , Animales , Calcio/metabolismo , Agonistas de los Canales de Calcio/química , Agonistas de los Canales de Calcio/farmacocinética , Canales de Calcio/metabolismo , Células Cultivadas , Diseño de Fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Biológicos , Neuronas/efectos de los fármacos , Ratas , Receptores de Somatostatina/química
14.
Front Cell Neurosci ; 10: 106, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27199660

RESUMEN

Members of the Shank family of multidomain proteins (Shank1, Shank2, and Shank3) are core components of the postsynaptic density (PSD) of excitatory synapses. At synaptic sites Shanks serve as scaffolding molecules that cluster neurotransmitter receptors as well as cell adhesion molecules attaching them to the actin cytoskeleton. In this study we investigated the synapse specific localization of Shank1-3 and focused on well-defined synaptic contacts within the hippocampal formation. We found that all three family members are present only at VGLUT1-positive synapses, which is particularly visible at mossy fiber contacts. No costaining was found at VGLUT2-positive contacts indicating that the molecular organization of VGLUT2-associated PSDs diverges from classical VGLUT1-positive excitatory contacts in the hippocampus. In light of SHANK mutations in neuropsychiatric disorders, this study indicates which glutamatergic networks within the hippocampus will be primarily affected by shankopathies.

15.
NPJ Sci Learn ; 1: 16001, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27721985

RESUMEN

The current dogma suggests that the formation of long-term memory (LTM) is dependent on protein synthesis but persistence of the memory trace is not. However, many of the studies examining the effect of protein synthesis inhibitors (PSIs) on LTM persistence were performed in the hippocampus, which is known to have a time-dependent role in memory storage, rather than the cortex, which is considered to be the main structure to store long-term memories. Here we studied the effect of PSIs on LTM formation and persistence in male Wistar Hola (n ≥ 5) rats by infusing the protein synthesis inhibitor, anisomycin (100 µg, 1 µl), into the gustatory cortex (GC) during LTM formation and persistence in conditioned taste aversion (CTA). We found that local anisomycin infusion to the GC before memory acquisition impaired LTM formation (P = 8.9E - 5), but had no effect on LTM persistence when infused 3 days post acquisition (P = 0.94). However, when we extended the time interval between treatment with anisomycin and testing from 3 days to 14 days, LTM persistence was enhanced (P = 0.01). The enhancement was on the background of stable and non-declining memory, and was not recapitulated by another amnesic agent, APV (10 µg, 1 µl), an N-methyl-d-aspartate receptor antagonist (P = 0.54). In conclusion, CTA LTM remains sensitive to the action of PSIs in the GC even 3 days following memory acquisition. This sensitivity is differentially expressed between the formation and persistence of LTM, suggesting that increased cortical protein synthesis promotes LTM formation, whereas decreased protein synthesis promotes LTM persistence.

16.
J Med Chem ; 59(11): 5520-41, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27167326

RESUMEN

p21-activated kinase 1 (PAK1) has an important role in transducing signals in several oncogenic pathways. The concept of inhibiting this kinase has garnered significant interest over the past decade, particularly for targeting cancers associated with PAK1 amplification. Animal studies with the selective group I PAK (pan-PAK1, 2, 3) inhibitor G-5555 from the pyrido[2,3-d]pyrimidin-7-one class uncovered acute toxicity with a narrow therapeutic window. To attempt mitigating the toxicity, we introduced significant structural changes, culminating in the discovery of the potent pyridone side chain analogue G-9791. Mouse tolerability studies with this compound, other members of this series, and compounds from two structurally distinct classes revealed persistent toxicity and a correlation of minimum toxic concentrations and PAK1/2 mediated cellular potencies. Broad screening of selected PAK inhibitors revealed PAK1, 2, and 3 as the only overlapping targets. Our data suggest acute cardiovascular toxicity resulting from the inhibition of PAK2, which may be enhanced by PAK1 inhibition, and cautions against continued pursuit of pan-group I PAK inhibitors in drug discovery.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Quinasas p21 Activadas/antagonistas & inhibidores , Enfermedad Aguda , Animales , Relación Dosis-Respuesta a Droga , Femenino , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Piridinas/síntesis química , Piridinas/química , Piridonas , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad , Quinasas p21 Activadas/metabolismo
17.
mBio ; 7(5)2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27601569

RESUMEN

UNLABELLED: The type I signal peptidase of Staphylococcus aureus, SpsB, is an attractive antibacterial target because it is essential for viability and extracellularly accessible. We synthesized compound 103, a novel arylomycin-derived inhibitor of SpsB with significant potency against various clinical S. aureus strains (MIC of ~1 µg/ml). The predominant clinical strain USA300 developed spontaneous resistance to compound 103 with high frequency, resulting from single point mutations inside or immediately upstream of cro/cI, a homolog of the lambda phage transcriptional repressor cro These cro/cI mutations led to marked (>50-fold) overexpression of three genes encoding a putative ABC transporter. Overexpression of this ABC transporter was both necessary and sufficient for resistance and, notably, circumvented the essentiality of SpsB during in vitro culture. Mutation of its predicted ATPase gene abolished resistance, suggesting a possible role for active transport; in these bacteria, resistance to compound 103 occurred with low frequency and through mutations in spsB Bacteria overexpressing the ABC transporter and lacking SpsB were capable of secreting a subset of proteins that are normally cleaved by SpsB and instead were cleaved at a site distinct from the canonical signal peptide. These bacteria secreted reduced levels of virulence-associated proteins and were unable to establish infection in mice. This study reveals the mechanism of resistance to a novel arylomycin derivative and demonstrates that the nominal essentiality of the S. aureus signal peptidase can be circumvented by the upregulation of a putative ABC transporter in vitro but not in vivo IMPORTANCE: The type I signal peptidase of Staphylococcus aureus (SpsB) enables the secretion of numerous proteins by cleavage of the signal peptide. We synthesized an SpsB inhibitor with potent activity against various clinical S. aureus strains. The predominant S. aureus strain USA300 develops resistance to this inhibitor by mutations in a novel transcriptional repressor (cro/cI), causing overexpression of a putative ABC transporter. This mechanism promotes the cleavage and secretion of various proteins independently of SpsB and compensates for the requirement of SpsB for viability in vitro However, bacteria overexpressing the ABC transporter and lacking SpsB secrete reduced levels of virulence-associated proteins and are unable to infect mice. This study describes a bacterial resistance mechanism that provides novel insights into the biology of bacterial secretion.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Animales , Antibacterianos/farmacología , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Expresión Génica , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Pruebas de Sensibilidad Microbiana , Mutación , Selección Genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Virulencia
18.
J Med Chem ; 58(12): 5121-36, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26030457

RESUMEN

The p21-activated kinases (PAKs) play important roles in cytoskeletal organization, cellular morphogenesis, and survival and have generated significant attention as potential therapeutic targets for cancer. Following a high-throughput screen, we identified an aminopyrazole scaffold-based series that was optimized to yield group I selective PAK inhibitors. A structure-based design effort aimed at targeting the ribose pocket for both potency and selectivity led to much-improved group I vs II selectivity. Early lead compounds contained a basic primary amine, which was found to be a major metabolic soft spot with in vivo clearance proceeding predominantly via N-acetylation. We succeeded in identifying replacements with improved metabolic stability, leading to compounds with lower in vivo rodent clearance and excellent group I PAK selectivity.


Asunto(s)
Diseño de Fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/química , Pirazoles/farmacología , Quinasas p21 Activadas/antagonistas & inhibidores , Animales , Humanos , Ratones , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/farmacocinética , Pirazoles/farmacocinética , Ratas , Quinasas p21 Activadas/química , Quinasas p21 Activadas/metabolismo
19.
ACS Med Chem Lett ; 6(6): 711-5, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26101579

RESUMEN

To increase kinase selectivity in an aminopyrazole-based PAK1 inhibitor series, analogues were designed to interact with the PAK1 deep-front pocket pre-DFG residue Thr-406, a residue that is hydrophobic in most kinases. This goal was achieved by installing lactam head groups to the aminopyrazole hinge binding moiety. The corresponding analogues represent the most kinase selective ATP-competitive Group I PAK inhibitors described to date. Hydrogen bonding with the Thr-406 side chain was demonstrated by X-ray crystallography, and inhibitory activities, particularly against kinases with hydrophobic pre-DFG residues, were mitigated. Leveraging hydrogen bonding side chain interactions with polar pre-DFG residues is unprecedented, and similar strategies should be applicable to other appropriate kinases.

20.
ACS Med Chem Lett ; 6(12): 1241-6, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26713112

RESUMEN

Signaling pathways intersecting with the p21-activated kinases (PAKs) play important roles in tumorigenesis and cancer progression. By recognizing that the limitations of FRAX1036 (1) were chiefly associated with the highly basic amine it contained, we devised a mitigation strategy to address several issues such as hERG activity. The 5-amino-1,3-dioxanyl moiety was identified as an effective means of reducing pK a and logP simultaneously. When positioned properly within the scaffold, this group conferred several benefits including potency, pharmacokinetics, and selectivity. Mouse xenograft PK/PD studies were carried out using an advanced compound, G-5555 (12), derived from this approach. These studies concluded that dose-dependent pathway modulation was achievable and paves the way for further in vivo investigations of PAK1 function in cancer and other diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA