Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Cell Sci ; 137(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682259

RESUMEN

SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Histona Desacetilasa 2 , Proteínas Nucleares , Regiones Promotoras Genéticas , SARS-CoV-2 , Transactivadores , Humanos , Presentación de Antígeno/genética , Células Presentadoras de Antígenos/metabolismo , Células Presentadoras de Antígenos/inmunología , COVID-19/virología , COVID-19/inmunología , COVID-19/genética , COVID-19/metabolismo , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Regulación hacia Abajo/genética , Células HEK293 , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/inmunología , Transactivadores/metabolismo , Transactivadores/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética
2.
Biochem Cell Biol ; 98(5): 612-623, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32339465

RESUMEN

Using multiple imaging modalities while performing independent experiments in parallel can greatly enhance the throughput of microscopy-based research, but requires the provision of appropriate experimental conditions in a format that meets the optical requirements of the microscope. Although customized imaging chambers can meet these challenges, the difficulty of manufacturing custom chambers and the relatively high cost and design inflexibility of commercial chambers has limited the adoption of this approach. Herein, we demonstrate the use of 3D printing to produce inexpensive, customized, live-cell imaging chambers that are compatible with a range of imaging modalities, including super-resolution microscopy. In this approach, biocompatible plastics are used to print imaging chambers designed to meet the specific needs of an experiment, followed by adhesion of the printed chamber to a glass coverslip, producing a chamber that is impermeant to liquids and that supports the growth and imaging of cells over multiple days. This approach can also be used to produce moulds for casting microfluidic devices made of polydimethylsiloxane. The utility of these chambers is demonstrated using designs for multiplex microscopy, imaging under shear, chemotaxis, and general cellular imaging. Together, this approach represents an inexpensive yet highly customizable approach for producing imaging chambers that are compatible with modern microscopy techniques.


Asunto(s)
Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Imagen Óptica , Impresión Tridimensional , Animales , Supervivencia Celular , Células Cultivadas , Chlorocebus aethiops , Ratones
3.
Eur J Immunol ; 49(4): 600-610, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30656676

RESUMEN

Efferocytosis is essential for homeostasis and prevention of the inflammatory and autoimmune diseases resulting from apoptotic cell lysis. CD93 is a transmembrane glycoprotein previously implicated in efferocytosis, with mutations in CD93 predisposing patients to efferocytosis-associated diseases. CD93 is a cell surface protein, which is proteolytically shed under inflammatory conditions, but it is unknown how CD93 mediates efferocytosis or whether its efferocytic activity is mediated by the soluble or membrane-bound form. Herein, using cell lines and human monocytes and macrophages, we demonstrate that soluble CD93 (sCD93) potently opsonizes apoptotic cells but not a broad range of microorganisms, whereas membrane-bound CD93 has no phagocytic, efferocytic, or tethering activity. Using mass spectrometry, we identified αx ß2 as the receptor that recognizes sCD93, and via deletion mutagenesis determined that sCD93 binds to apoptotic cells via its C-type lectin-like domain and to αx ß2 by its EGF-like repeats. The bridging of apoptotic cells to αx ß2 markedly enhanced efferocytosis by macrophages and was abrogated by αx ß2 knockdown. Combined, these data elucidate the mechanism by which CD93 regulates efferocytosis and identifies a previously unreported opsonin-receptor system utilized by phagocytes for the efferocytic clearance of apoptotic cells.


Asunto(s)
Apoptosis , Integrinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Opsoninas/metabolismo , Receptores de Complemento/metabolismo , Animales , Biomarcadores , Células CHO , Línea Celular , Cricetulus , Células HEK293 , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Glicoproteínas de Membrana/sangre , Glicoproteínas de Membrana/genética , Unión Proteica , Receptores de Complemento/sangre , Receptores de Complemento/genética , Proteínas Recombinantes
4.
Nat Immunol ; 9(7): 743-52, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18536720

RESUMEN

Neutrophils encounter and 'prioritize' many chemoattractants in their pursuit of bacteria. Here we tested the possibility that the phosphatase PTEN is responsible for the prioritization of chemoattractants. Neutrophils induced chemotaxis by two separate pathways, the phosphatidylinositol-3-OH kinase (PI(3)K) phosphatase and tensin homolog (PTEN) pathway, and the p38 mitogen-activated protein kinase pathway, with the p38 pathway dominating over the PI(3)K pathway. Pten(-/-) neutrophils could not prioritize chemoattractants and were 'distracted' by chemokines when moving toward bacterial chemoattractants. In opposing gradients, PTEN became distributed throughout the cell circumference, which inhibited all PI(3)K activity, thus permitting 'preferential' migration toward bacterial products via phospholipase A(2) and p38. Such prioritization was defective in Pten(-/-) neutrophils, which resulted in defective bacterial clearance in vivo. Our data identify a PTEN-dependent mechanism in neutrophils to prioritize, 'triage' and integrate responses to multiple chemotactic cues.


Asunto(s)
Quimiotaxis de Leucocito/fisiología , Neutrófilos/metabolismo , Fosfohidrolasa PTEN/metabolismo , Animales , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Ratones , Ratones Transgénicos , Neutrófilos/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/inmunología , Fosfatos de Fosfatidilinositol/metabolismo , Transporte de Proteínas/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 316(5): L740-L750, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30702342

RESUMEN

In healthy blood vessels, albumin crosses the endothelium to leave the circulation by transcytosis. However, little is known about the regulation of albumin transcytosis or how it differs in different tissues; its physiological purpose is also unclear. Using total internal reflection fluorescence microscopy, we quantified transcytosis of albumin across primary human microvascular endothelial cells from both lung and skin. We then validated our in vitro findings using a tissue-specific knockout mouse model. We observed that albumin transcytosis was saturable in the skin but not the lung microvascular endothelial cells, implicating a receptor-mediated process. We identified the scavenger receptor CD36 as being both necessary and sufficient for albumin transcytosis across dermal microvascular endothelium, in contrast to the lung where macropinocytosis dominated. Mutations in the apical helical bundle of CD36 prevented albumin internalization by cells. Mice deficient in CD36 specifically in endothelial cells exhibited lower basal permeability to albumin and less basal tissue edema in the skin but not in the lung. Finally, these mice also exhibited a smaller subcutaneous fat layer despite having identical total body weights and circulating fatty acid levels as wild-type animals. In conclusion, CD36 mediates albumin transcytosis in the skin but not the lung. Albumin transcytosis may serve to regulate fatty acid delivery from the circulation to tissues.


Asunto(s)
Albúminas/metabolismo , Antígenos CD36/metabolismo , Células Endoteliales/metabolismo , Ácidos Grasos/metabolismo , Animales , Antígenos CD36/química , Antígenos CD36/deficiencia , Antígenos CD36/genética , Células Cultivadas , Células Endoteliales/citología , Humanos , Pulmón/irrigación sanguínea , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/citología , Microvasos/metabolismo , Mutagénesis Sitio-Dirigida , Pinocitosis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Piel/irrigación sanguínea , Grasa Subcutánea/anatomía & histología , Grasa Subcutánea/metabolismo , Distribución Tisular , Transcitosis
6.
Mol Biol Evol ; 35(2): 440-450, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29165618

RESUMEN

Macrophage Receptor with COllagenous structure (MARCO) is a class A scavenger receptor that binds, phagocytoses, and modifies inflammatory responses to bacterial pathogens. Multiple candidate gene approach studies have shown that polymorphisms in MARCO are associated with susceptibility or resistance to Mycobacterium tuberculosis infection, but how these variants alter function is not known. To complement candidate gene approach studies, we previously used phylogenetic analyses to identify a residue, glutamine 452 (Q452), within the ligand-binding Scavenger Receptor Cysteine Rich domain as undergoing positive selection in humans. Herein, we show that Q452 is found in Denisovans, Neanderthals, and extant humans, but all other nonprimate, terrestrial, and aquatic mammals possess an aspartic acid (D452) residue. Further analysis of hominoid sequences of MARCO identified an additional human-specific mutation, phenylalanine 282 (F282), within the collagenous domain. We show that residue 282 is polymorphic in humans, but only 17% of individuals (rs6761637) possess the ancestral serine residue at position 282. We show that rs6761637 is in linkage disequilibrium with MARCO polymorphisms that have been previously linked to susceptibility to pulmonary tuberculosis. To assess the functional importance of sites Q452 and F282 in humans, we cloned the ancestral residues and loss-of-function mutations and investigated the role of these residues in binding and internalizing polystyrene microspheres and Escherichia coli. Herein, we show that the residues at sites 452 and 282 enhance receptor function.


Asunto(s)
Fagocitosis/genética , Receptores Inmunológicos/genética , Selección Genética , Animales , Células HEK293 , Humanos , Mutación , Receptores Inmunológicos/metabolismo
7.
Biophys J ; 114(12): 2887-2899, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29925025

RESUMEN

Diffusion in cellular membranes is regulated by processes that occur over a range of spatial and temporal scales. These processes include membrane fluidity, interprotein and interlipid interactions, interactions with membrane microdomains, interactions with the underlying cytoskeleton, and cellular processes that result in net membrane movement. The complex, non-Brownian diffusion that results from these processes has been difficult to characterize, and moreover, the impact of factors such as membrane recycling on membrane diffusion remains largely unexplored. We have used a careful statistical analysis of single-particle tracking data of the single-pass plasma membrane protein CD93 to show that the diffusion of this protein is well described by a continuous-time random walk in parallel with an aging process mediated by membrane corrals. The overall result is an evolution in the diffusion of CD93: proteins initially diffuse freely on the cell surface but over time become increasingly trapped within diffusion-limiting membrane corrals. Stable populations of freely diffusing and corralled CD93 are maintained by an endocytic/exocytic process in which corralled CD93 is selectively endocytosed, whereas freely diffusing CD93 is replenished by exocytosis of newly synthesized and recycled CD93. This trafficking not only maintained CD93 diffusivity but also maintained the heterogeneous distribution of CD93 in the plasma membrane. These results provide insight into the nature of the biological and biophysical processes that can lead to significantly non-Brownian diffusion of membrane proteins and demonstrate that ongoing membrane recycling is critical to maintaining steady-state diffusion and distribution of proteins in the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Animales , Células CHO , Cricetulus , Difusión , Endocitosis , Exocitosis , Glicoproteínas de Membrana/metabolismo
8.
Mol Biol Evol ; 34(7): 1613-1628, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369510

RESUMEN

TYRO3, AXL, and MERTK (TAM) receptors are a family of receptor tyrosine kinases that maintain homeostasis through the clearance of apoptotic cells, and when defective, contribute to chronic inflammatory and autoimmune diseases such as atherosclerosis, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and Crohn's disease. In addition, certain enveloped viruses utilize TAM receptors for immune evasion and entry into host cells, with several viruses preferentially hijacking MERTK for these purposes. Despite the biological importance of TAM receptors, little is understood of their recent evolution and its impact on their function. Using evolutionary analysis of primate TAM receptor sequences, we identified strong, recent positive selection in MERTK's signal peptide and transmembrane domain that was absent from TYRO3 and AXL. Reconstruction of hominid and primate ancestral MERTK sequences revealed three nonsynonymous single nucleotide polymorphisms in the human MERTK signal peptide, with a G14C mutation resulting in a predicted non-B DNA cruciform motif, producing a significant decrease in MERTK expression with no significant effect on MERTK trafficking or half-life. Reconstruction of MERTK's transmembrane domain identified three amino acid substitutions and four amino acid insertions in humans, which led to significantly higher levels of self-clustering through the creation of a new interaction motif. This clustering counteracted the effect of the signal peptide mutations through enhancing MERTK avidity, whereas the lower MERTK expression led to reduced binding of Ebola virus-like particles. The decreased MERTK expression counterbalanced by increased avidity is consistent with antagonistic coevolution to evade viral hijacking of MERTK.


Asunto(s)
Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Animales , Apoptosis/genética , Secuencia de Bases/genética , Movimiento Celular , Evolución Molecular , Homeostasis , Humanos , Filogenia , Polimorfismo de Nucleótido Simple/genética , Primates/genética , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Mutación Silenciosa/genética , Tirosina Quinasa c-Mer , Tirosina Quinasa del Receptor Axl
9.
Biochem Biophys Res Commun ; 507(1-4): 519-525, 2018 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-30458990

RESUMEN

The regulated secretory pathway is a specialized form of protein secretion found in endocrine and neuroendocrine cell types. Pro-opiomelanocortin (POMC) is a pro-hormone that utilizes this pathway to be trafficked to dense core secretory granules (DCSGs). Within this organelle, POMC is processed to multiple bioactive hormones that play key roles in cellular physiology. However, the complete set of cellular membrane trafficking proteins that mediate the correct sorting of POMC to DCSGs remain unknown. Here, we report the roles of the phosphofurin acidic cluster sorting protein - 1 (PACS-1) and the clathrin adaptor protein 1 (AP-1) in the targeting of POMC to DCSGs. Upon knockdown of PACS-1 and AP-1, POMC is readily secreted into the extracellular milieu and fails to be targeted to DCSGs.


Asunto(s)
Complejo 1 de Proteína Adaptadora/metabolismo , Hormona Adrenocorticotrópica/metabolismo , Vías Secretoras , Proteínas de Transporte Vesicular/metabolismo , Complejo 3 de Proteína Adaptadora/metabolismo , Animales , Línea Celular , Lisosomas/metabolismo , Ratones , Proopiomelanocortina/metabolismo , Unión Proteica
10.
Cell Tissue Res ; 371(3): 455-471, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29185068

RESUMEN

Neutrophils respond nearly instantly to infection, rapidly deploying a potent enzymatic and chemical arsenal immediately upon entering an infected site. This capacity for rapid and potent responses is endowed by stores of antimicrobial proteins contained in readily mobilizable granules. These granules contain the proteins necessary to mediate the recruitment, chemotaxis, antimicrobial function and NET formation of neutrophils. Four granule types exist, and are sequentially deployed as neutrophils enter infected sites. Secretory vesicles are released first, enabling recruitment of neutrophils out of the blood. Next, specific and gelatinase granules are released to enable neutrophil migration and begin the formation of an antimicrobial environment. Finally, azurophilic granules release potent antimicrobial proteins at the site of infection and into phagosomes. The step-wise mobilization of these granules is regulated by calcium signaling, while specific trafficking regulators and membrane fusion complexes ensure the delivery of granules to the correct subcellular site. In this review, we describe neutrophil granules from their formation through to their deployment at the site of infection, focusing on recent developments in our understanding of the signaling pathways and vesicular trafficking mechanisms which mediate neutrophil degranulation.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Neutrófilos/metabolismo , Animales , Degranulación de la Célula , Trampas Extracelulares/metabolismo , Humanos , Transporte de Proteínas , Vesículas Secretoras/metabolismo
11.
Cell Microbiol ; 18(4): 514-35, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26408990

RESUMEN

The success of Staphylococcus aureus as a pathogen is partly attributable to its ability to thwart host innate immune responses, which includes resisting the antimicrobial functions of phagocytes. Here, we have studied the interaction of methicillin-resistant S. aureus (MRSA) strain USA300 with murine RAW 264.7 and primary human macrophages using molecular imaging and single cell analysis to obtain an unprecedented understanding of the interaction between the macrophage and MRSA. Herein we demonstrate that macrophages fail to control intracellular infection by MRSA USA300 despite trafficking the bacteria into mature phagolysosomes. Using fluorescence-based proliferation assays we also show that intracellular staphylococci proliferate and that replication commences while the bacteria are residing in mature phagolysosomes hours after initial phagocytosis. Finally, live-cell fluorescence video microscopy allowed for unprecedented visual insight into the escape of MRSA from macrophages, demonstrating that the macrophages die through a pathway characterized by membrane blebbing and activation of caspase-3 followed by acquisition of the vital dye propidium iodide. Moreover, cell death precedes the emergence of MRSA from infected macrophages, and these events can be ablated by prolonged exposure of infected phagocytes to gentamicin.


Asunto(s)
Muerte Celular , Interacciones Huésped-Patógeno , Macrófagos/microbiología , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Fagosomas/microbiología , Animales , Células Cultivadas , Humanos , Ratones , Microscopía Fluorescente , Microscopía por Video
12.
J Immunol ; 195(5): 2408-16, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26238489

RESUMEN

During inflammation, leukocyte-endothelial cell interactions generate molecular signals that regulate cell functions. The Ca(2+)- and F-actin-binding leukocyte-specific protein 1 (LSP1) expressed in leukocytes and nonhematopoietic endothelial cells is pivotal in regulating microvascular permeability and leukocyte recruitment. However, cell-specific function of LSP1 during leukocyte recruitment remains elusive. Using intravital microscopy of cremasteric microvasculature of chimeric LSP1-deficient mice, we show that not neutrophil but endothelial LSP1 regulates neutrophil transendothelial migration and extravascular directionality without affecting the speed of neutrophil migration in tissue in response to CXCL2 chemokine gradient. The expression of PECAM-1-sensitive α6ß1 integrins on the surface of transmigrated neutrophils was blunted in mice deficient in endothelial LSP1. Functional blocking studies in vivo and in vitro elucidated that α6ß1 integrins orchestrated extravascular directionality but not the speed of neutrophil migration. In LSP1-deficient mice, PECAM-1 expression was reduced in endothelial cells, but not in neutrophils. Similarly, LSP1-targeted small interfering RNA silencing in murine endothelial cells mitigated mRNA and protein expression of PECAM-1, but not ICAM-1 or VCAM-1. Overexpression of LSP1 in endothelial cells upregulated PECAM-1 expression. Furthermore, the expression of transcription factor GATA-2 that regulates endothelial PECAM-1 expression was blunted in LSP1-deficient or LSP1-silenced endothelial cells. The present study unravels endothelial LSP1 as a novel cell-specific regulator of integrin α6ß1-dependent neutrophil extravascular chemotactic function in vivo, effective through GATA-2-dependent transcriptional regulation of endothelial PECAM-1 expression.


Asunto(s)
Proteínas de Unión al Calcio/inmunología , Quimiotaxis de Leucocito/inmunología , Neutrófilos/inmunología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/inmunología , Animales , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Línea Celular , Células Cultivadas , Quimiocina CXCL2/inmunología , Quimiocina CXCL2/farmacología , Quimiotaxis de Leucocito/genética , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Expresión Génica/inmunología , Immunoblotting , Ratones de la Cepa 129 , Ratones Noqueados , Proteínas de Microfilamentos , Microscopía Confocal , Infiltración Neutrófila/genética , Infiltración Neutrófila/inmunología , Neutrófilos/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Imagen de Lapso de Tiempo/métodos , Migración Transendotelial y Transepitelial/efectos de los fármacos , Migración Transendotelial y Transepitelial/genética , Migración Transendotelial y Transepitelial/inmunología
13.
PLoS Comput Biol ; 11(12): e1004634, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26657340

RESUMEN

Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Modelos Biológicos , Imagen Molecular/métodos , Complejos Multiproteicos/metabolismo , Mapeo de Interacción de Proteínas/métodos , Programas Informáticos , Algoritmos , Gráficos por Computador , Simulación por Computador , Modelos Químicos , Complejos Multiproteicos/ultraestructura , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Interfaz Usuario-Computador
14.
Am J Physiol Endocrinol Metab ; 309(1): E35-44, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25944880

RESUMEN

Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue infiltration by immune cells.


Asunto(s)
Tejido Adiposo/citología , Células Endoteliales/efectos de los fármacos , Inflamación , Insulina/metabolismo , Monocitos/efectos de los fármacos , Ácido Palmítico/farmacología , Transcitosis/efectos de los fármacos , Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Microvasos/citología , Monocitos/fisiología , Transducción de Señal/efectos de los fármacos
15.
Methods Mol Biol ; 2692: 41-59, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37365460

RESUMEN

Efferocytosis, the phagocytic removal of apoptotic cells, is a dynamic process requiring recruitment of numerous regulatory proteins to mediate the uptake, engulfment, and degradation of apoptotic cells. Herein, we describe microscopy-based methods for the enumeration of efferocytic events and characterization of the spatiotemporal dynamics of signaling molecule recruitment during efferocytosis using genetically encoded probes and immunofluorescent labeling. While these methods are illustrated using macrophages, they are applicable to any efferocytic cell type.


Asunto(s)
Apoptosis , Fagocitosis , Macrófagos/metabolismo , Fagocitos , Transducción de Señal
16.
J Mol Med (Berl) ; 101(10): 1191-1208, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37624387

RESUMEN

The transcription factor GATA2 is involved in human diseases ranging from hematopoietic disorders, to cancer, to infectious diseases. GATA2 is one of six GATA-family transcription factors that act as pioneering transcription factors which facilitate the opening of heterochromatin and the subsequent binding of other transcription factors to induce gene expression from previously inaccessible regions of the genome. Although GATA2 is essential for hematopoiesis and lymphangiogenesis, it is also expressed in other tissues such as the lung, prostate gland, gastrointestinal tract, central nervous system, placenta, fetal liver, and fetal heart. Gene or transcriptional abnormalities of GATA2 causes or predisposes patients to several diseases including the hematological cancers acute myeloid leukemia and acute lymphoblastic leukemia, the primary immunodeficiency MonoMAC syndrome, and to cancers of the lung, prostate, uterus, kidney, breast, gastric tract, and ovaries. Recent data has also linked GATA2 expression and mutations to responses to infectious diseases including SARS-CoV-2 and Pneumocystis carinii pneumonia, and to inflammatory disorders such as atherosclerosis. In this article we review the role of GATA2 in the etiology and progression of these various diseases.

17.
Methods Mol Biol ; 2692: 61-77, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37365461

RESUMEN

Efferocytes express multiple receptors that mediate the recognition and engulfment of apoptotic cells through a process known as efferocytosis. Ligation of these receptors induces the formation of a structured efferocytic synapse that mediates the engulfment of the apoptotic cell by the efferocyte. The lateral diffusion of these receptors allows for clustering-mediated receptor activation and is central for the formation of the efferocytic synapse. This chapter describes a single particle tracking protocol to analyze the diffusion of efferocytic receptors within a frustrated efferocytosis model. This enables high-resolution tracking of efferocytic receptors throughout synapse formation, allowing the user to simultaneously quantify synapse formation and the dynamics of receptor diffusion as the efferocytic synapse evolves.


Asunto(s)
Macrófagos , Fagocitosis , Fagocitosis/fisiología , Apoptosis
18.
Arthritis Rheumatol ; 75(5): 685-696, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36448607

RESUMEN

OBJECTIVE: Osteoarthritis (OA) exposes all joint tissues to physiologic stresses, increasing the need to clear apoptotic cells from tissues, including the synovium. We undertook this study to assess the burden of apoptotic cells in synovial tissue in patients with late-stage knee OA and to investigate whether OA impairs the macrophage-mediated clearance of apoptotic cells via efferocytosis. METHODS: Synovial tissue was collected from individuals with healthy knees and patients with late-stage knee OA during arthroplasty. Synovial apoptotic cell burden was assessed by immunofluorescence for cleaved caspase 3. Efferocytosis of apoptotic Jurkat cells by CD14+ synovial tissue macrophages and peripheral blood-derived macrophages was quantified using immunofluorescence microscopy. Effects of OA on macrophage-mediated efferocytosis were modeled by stimulating blood-derived macrophages with synovial fluid collected from individuals with healthy knees and patients with early- or late-stage knee OA. RESULTS: Patients with late-stage knee OA had more apoptotic synovial cells compared to healthy individuals. There was a marked reduction in the fraction of synovial tissue macrophages engaging in efferocytosis and the quantity of material efferocytosed by individual macrophages in OA patients. Blood-derived macrophages exposed to synovial fluid from patients with knee OA recapitulated the defective efferocytosis, with the greatest effect from patients with early-stage knee OA and higher disease activity (pain and inflammation). CONCLUSION: Apoptotic cells accumulate in the synovium of patients with late-stage knee OA. Our results suggest that OA impairs critical homeostatic functions of synovial macrophages, leading to accumulation of apoptotic cells.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/cirugía , Inflamación , Membrana Sinovial , Líquido Sinovial , Macrófagos
19.
J Exp Med ; 203(12): 2569-75, 2006 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-17116736

RESUMEN

The prevailing view is that the beta2-integrins Mac-1 (alphaMbeta2, CD11b/CD18) and LFA-1 (alphaLbeta2, CD11a/CD18) serve similar biological functions, namely adhesion, in the leukocyte recruitment cascade. Using real-time and time-lapse intravital video-microscopy and confocal microscopy within inflamed microvessels, we systematically evaluated the function of Mac-1 and LFA-1 in the recruitment paradigm. The chemokine macrophage inflammatory protein-2 induced equivalent amounts of adhesion in wild-type and Mac-1-/- mice but very little adhesion in LFA-1-/- mice. Time-lapse video-microscopy within the postcapillary venules revealed that immediately upon adhesion, there is significant intraluminal crawling of all neutrophils to distant emigration sites in wild-type mice. In dramatic contrast, very few Mac-1-/- neutrophils crawled with a 10-fold decrease in displacement and a 95% reduction in velocity. Therefore, Mac-1-/- neutrophils initiated transmigration closer to the initial site of adhesion, which in turn led to delayed transmigration due to movement through nonoptimal emigration sites. Interestingly, the few LFA-1-/- cells that did adhere crawled similarly to wild-type neutrophils. Intercellular adhesion molecule-1 but not intercellular adhesion molecule-2 mediated the Mac-1-dependent crawling. These in vivo results clearly delineate two fundamentally different molecular mechanisms for LFA-1 and Mac-1 in vivo, i.e., LFA-1-dependent adhesion followed by Mac-1-dependent crawling, and both steps ultimately contribute to efficient emigration out of the vasculature.


Asunto(s)
Movimiento Celular/inmunología , Rodamiento de Leucocito/inmunología , Neutrófilos/inmunología , Animales , Adhesión Celular/genética , Adhesión Celular/inmunología , Movimiento Celular/genética , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Rodamiento de Leucocito/genética , Antígeno-1 Asociado a Función de Linfocito/genética , Antígeno-1 Asociado a Función de Linfocito/fisiología , Antígeno de Macrófago-1/genética , Antígeno de Macrófago-1/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/patología , Vénulas/inmunología , Vénulas/patología
20.
Methods Mol Biol ; 2440: 57-73, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35218532

RESUMEN

Live cell microscopy has become a common technique for exploring dynamic biological processes. When combined with fluorescent markers of cellular structures of interest, or fluorescent reporters of a biological activity of interest, live cell microscopy enables precise temporally and spatially resolved quantitation of the biological processes under investigation. However, because living cells are not normally exposed to light, live cell fluorescence imaging is significantly hindered by the effects of photodamage, which encompasses photobleaching of fluorophores and phototoxicity of the cells under observation. In this chapter, we outline several methods for optimizing and maintaining long-term imaging of live cells while simultaneously minimizing photodamage. This protocol demonstrates the intracellular trafficking of early and late endosomes following phagocytosis using both two and three dimensional imaging, but this protocol can easily be modified to image any biological process of interest in nearly any cell type.


Asunto(s)
Colorantes Fluorescentes , Imagen Óptica , Bioensayo , Microscopía Fluorescente/métodos , Fotoblanqueo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA