Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuromodulation ; 26(1): 172-181, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36608962

RESUMEN

INTRODUCTION: A novel, spinal cord stimulation (SCS) system with a battery-free miniaturized implantable pulse generator (IPG) was used in this feasibility study. The system uses an external power source that communicates bidirectionally with the IPG (< 1.5 cm3). Human factors, subject comfort, and effects on low back and leg pain were evaluated in this first-in-human study. MATERIALS AND METHODS: A prospective, multicenter, open-label clinical trial was initiated to evaluate the safety and performance of a novel miniaturized stimulator in the treatment of chronic, intractable leg and low-back pain. Eligible subjects were recruited for the study and gave consent. Subjects who passed the screening/trial phase (defined as ≥ 50% decrease in pain) continued to the long-term implant phase and were followed up at predefined time points after device activation. Interim clinical and usability outcomes were captured and reported at 90 days. RESULTS: Results of 22 subjects who chose a novel pulsed stimulation pattern therapy using the battery-free IPG (< 1.5 cm3) are described here. At 90-days follow-up, the average pain reduction was 79% in the leg (n = 22; p < 0.0001) and 76% in the low back (n = 21; p < 0.0001) compared with baseline. Responder rates (≥ 50% pain relief) at 90 days were 86% in leg pain (19/22) and 81% in low-back pain (17/21). Subjects rated the level of comfort of the external wearable power source to be 0.41 ± 0.73 at 90 days on an 11-point rating scale (0 = very comfortable, 10 = very uncomfortable). DISCUSSION: These interim results from the ongoing study indicate the favorable efficacy and usability of a novel, externally powered, battery-free SCS IPG (< 1.5 cm3) for leg and low-back pain. Study subjects wore the external power source continuously and found it comfortable, and the system provided significant pain relief. These preliminary findings warrant further investigation. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is ACTRN12618001862235.


Asunto(s)
Dolor Crónico , Dolor de la Región Lumbar , Dolor Intratable , Estimulación de la Médula Espinal , Humanos , Pierna , Estudios Prospectivos , Estimulación de la Médula Espinal/métodos , Dimensión del Dolor/métodos , Dolor Crónico/terapia , Dolor de la Región Lumbar/terapia , Resultado del Tratamiento , Médula Espinal
2.
Proc Natl Acad Sci U S A ; 116(47): 23772-23782, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685634

RESUMEN

The alpha rhythm is the longest-studied brain oscillation and has been theorized to play a key role in cognition. Still, its physiology is poorly understood. In this study, we used microelectrodes and macroelectrodes in surgical epilepsy patients to measure the intracortical and thalamic generators of the alpha rhythm during quiet wakefulness. We first found that alpha in both visual and somatosensory cortex propagates from higher-order to lower-order areas. In posterior cortex, alpha propagates from higher-order anterosuperior areas toward the occipital pole, whereas alpha in somatosensory cortex propagates from associative regions toward primary cortex. Several analyses suggest that this cortical alpha leads pulvinar alpha, complicating prevailing theories of a thalamic pacemaker. Finally, alpha is dominated by currents and firing in supragranular cortical layers. Together, these results suggest that the alpha rhythm likely reflects short-range supragranular feedback, which propagates from higher- to lower-order cortex and cortex to thalamus. These physiological insights suggest how alpha could mediate feedback throughout the thalamocortical system.


Asunto(s)
Ritmo alfa , Corteza Cerebral/fisiología , Electrodos , Electroencefalografía , Humanos , Tálamo/fisiología
3.
Pain Pract ; 22(6): 592-599, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35509116

RESUMEN

Spinal cord stimulation (SCS) is effective for the treatment of chronic intractable pain of the trunk and limbs. The mechanism of action may be based, at least in part, upon the gate control theory; however, new waveforms may suggest other mechanisms. Although benefits of the SCS technology generally outweigh the complications associated with SCS, some complications such as infection and skin erosion over the implant can result in device removal. Additional reasons for device removal, such as pocket pain and battery depletion, have driven technological innovations including battery-free implants and device miniaturization. The neurostimulation system described here was specifically designed to address complications commonly associated with implantable batteries and/or larger implantable devices. The benefits of the small size are further augmented by a minimally invasive implant procedure. Usability data show that patients found this novel neurostimulation system to be easy to use and comfortable to wear. What is more, clinical data demonstrate that the use of this system provides statistically significant reduction in pain scores with responder rates (defined as ≥50% reduction in pain) of 78% in the low back and 83% in the leg(s). Advances in miniaturization technology arose from the considerable shrinkage of the integrated circuit, with an increase in performance, according to Moore's law (1965). However, commensurate improvements in battery technology have not maintained a similar pace. This has prompted some manufacturers to place the battery outside, against the skin, thereby allowing a massive reduction in the implant volume, with the hopes of fewer device-related complications.


Asunto(s)
Dolor Crónico , Estimulación de la Médula Espinal , Dolor Crónico/terapia , Humanos , Manejo del Dolor/métodos , Médula Espinal , Estimulación de la Médula Espinal/métodos , Resultado del Tratamiento
4.
Acta Neurochir (Wien) ; 158(3): 513-20, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26743912

RESUMEN

INTRODUCTION: Facial pain is often debilitating and can be characterized by a sharp, stabbing, burning, aching, and dysesthetic sensation. Specifically, trigeminal neuropathic pain (TNP), anesthesia dolorosa, and persistent idiopathic facial pain (PIFP) are difficult diseases to treat, can be quite debilitating and an effective, enduring treatment remains elusive. METHODS: We retrospectively reviewed our early experience with stimulation involving the trigeminal and sphenopalatine ganglion stimulation for TNP, anesthesia dolorosa, and PIFP between 2010-2014 to assess the feasibility of implanting at these ganglionic sites. Seven patients received either trigeminal and/or sphenopalatine ganglion stimulation with or without peripheral nerve stimulation, having failed multiple alternative modalities of treatment. The treatments were tailored on the physical location of pain to ensure regional coverage with the stimulation. RESULTS: Fluoroscopy or frameless stereotaxy was utilized to place the sphenopalatine and/or trigeminal ganglion stimulator. All patients were initially trialed before implantation. Trial leads implanted in the pterygopalatine fossa near the sphenopalatine ganglion were implanted via transpterygoid (lateral-medial, infrazygomatic) approach. Trial leads were implanted in the trigeminal ganglion via percutaneous Hartel approach, all of which resulted in masseter contraction. Patients who developed clinically significant pain improvement underwent implantation. The trigeminal ganglion stimulation permanent implants involved placing a grid electrode over Meckel's cave via subtemporal craniotomy, which offered a greater ability to stimulate subdivisions of the trigeminal nerve, without muscular (V3) side effects. Two of the seven overall patients did not respond well to the trial and were not implanted. Five patients reported pain relief with up to 24-month follow-up. Several of the sphenopalatine ganglion stimulation patients had pain relief without any paresthesias. There were no electrode migrations or post-surgical complications. CONCLUSIONS: Refractory facial pain may respond positively to ganglionic forms of stimulation. It appears safe and durable to implant electrodes in the pterygopalatine fossa via a lateral transpterygoid approach. Also, implantation of an electrode grid overlying Meckel's cave appears to be a feasible alternative to the Hartel approach. Further investigation is needed to evaluate the usefulness of these approaches for various facial pain conditions.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Dolor Facial/terapia , Ganglios Parasimpáticos , Dolor Intratable/terapia , Ganglio del Trigémino , Adulto , Anciano , Electrodos Implantados , Dolor Facial/etiología , Dolor Facial/cirugía , Femenino , Ganglios Parasimpáticos/cirugía , Humanos , Masculino , Persona de Mediana Edad , Neuralgia/etiología , Neuralgia/terapia , Dolor Intratable/cirugía , Estudios Retrospectivos , Sinusitis/complicaciones , Tomografía Computarizada por Rayos X , Resultado del Tratamiento , Ganglio del Trigémino/cirugía
5.
Reg Anesth Pain Med ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821535

RESUMEN

BACKGROUND: We report the results from the first large, postmarket, multicentre, randomised controlled trial (RCT) evaluating peripheral nerve stimulation (PNS) for the treatment of chronic peripheral pain with a micro-implantable pulse generator (micro-IPG). METHODS: Subjects meeting eligibility were randomised (2:1) to either the active arm receiving PNS and conventional medical management (CMM) or the control arm receiving CMM alone. Treatments were limited to the following areas: lower back, shoulder, knee and foot/ankle. RESULTS: At 6 months, the active arm achieved an 88% responder rate with a 70% average reduction in pain. At the 3-month primary endpoint, the active arm achieved an 84% responder rate with an average pain reduction of 67% compared with the control arm, which achieved a 3% responder rate with an average pain reduction of 6%. Both responder rate and pain reduction in the active arm were significantly better than in the control arm (p<0.001). A majority of patient-reported outcomes also reached statistical significance. There have been no reports of pocket pain and no serious adverse device effects. 81% of subjects found the external wearable component of the PNS system to be comfortable. CONCLUSIONS: This study successfully reached its primary endpoint-the active arm achieved a statistically significant superior responder rate as compared with the control arm at 3 months. These RCT results demonstrated that PNS, with this micro-IPG, is efficacious and safe. This ongoing study will follow subjects for 3 years, the results of which will be reported as they become available.

6.
J Pain Res ; 17: 293-304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38274409

RESUMEN

Purpose: Spinal cord stimulation (SCS) is a highly effective treatment for chronic neuropathic pain. Despite recent advances in technology, treatment gaps remain. A small SCS system with a miniaturized implantable pulse generator (micro-IPG; <1.5 cm3 in volume) and an externally worn power source may be preferred by patients who do not want a large, implanted battery. We report here the long-term outcomes from the first-in-human study evaluating the safety and performance of a new neurostimulation system. Patients and Methods: This was a prospective, multi-center, open-label, single-arm study to evaluate this SCS system, in the treatment of chronic, intractable leg and low-back pain. Consented subjects who passed screening continued on to the long-term phase of the study. One-year, patient-reported outcomes (PRO's) such as pain (Numeric Rating Scale, NRS), functional disability, quality of life, and mood were captured. Results: Twenty-six (26) evaluable subjects with permanent implants were included in this analysis. The average leg pain NRS score decreased from 6.8 ± 1.2 at baseline to 1.1 ± 1.2 at the end of the study (p < 0.001), while the average low-back pain NRS score decreased from 6.8 ± 1.2 to 1.5 ± 1.2 (p < 0.001). The responder rate (proportion with ≥50% pain relief) was 91% in the leg(s) and 82% in the low back. There were significant improvements in functional disability (Oswestry Disability Index) and in mood (Beck Depression Inventory), demonstrating a 46% and 62% improvement, respectively (p < 0.001). Eleven-point Likert scales demonstrated the wearable to be very comfortable and very easy to use. Conclusion: There were considerable challenges conducting a clinical study during the COVID-19 pandemic, such as missed study programming visits. Nevertheless, subjects had significant PRO improvements through 1-year. The small size of the implanted device, along with a proprietary waveform, may allow for improved SCS outcomes and a drop in incidence of IPG-pocket pain.

7.
Pain Physician ; 26(7): 575-584, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37976486

RESUMEN

BACKGROUND: Chronic, intractable, neuropathic pain is readily treatable with spinal cord stimulation (SCS). Technological advancements, including device miniaturization, are advancing the field of neuromodulation. OBJECTIVES: We report here the results of an SCS clinical trial to treat chronic, low back and leg pain, with a micro-implantable pulse generator (micro-IPG). STUDY DESIGN: This was a single-arm, prospective, multicenter, postmarket, observational study. SETTING: Patients were recruited from 15 US-based comprehensive pain centers. METHODS: This open-label clinical trial was designed to evaluate the performance of the Nalu™ Neurostimulation System (Nalu Medical, Inc., Carlsbad, CA) in the treatment of low back and leg pain. Patients, who provided informed consent and were successfully screened for study entry, were implanted with temporary trial leads. Patients went on to receive a permanent implant of the leads and micro-IPG if they demonstrated a >= 50% reduction in pain during the temporary trial period. Patient-reported outcomes (PROs), such as pain scores, functional disability, mood, patient impression of change, comfort, therapy use profile, and device ease of use, were captured. RESULTS: At baseline, the average pain Visual Analog Scale (VAS) score was 72.1 ± 17.9 in the leg and 78.0 ± 15.4 in the low back. At 90 days following permanent implant (end of study), pain scores improved by 76% (VAS 18.5 ± 18.8) in the leg and 75% (VAS 19.7 ± 20.8) in the low back. Eighty-six percent  of both leg pain and low back pain patients demonstrated a >= 50% reduction in pain at 90 days following implant. The comfort of the external wearable (Therapy Disc and Adhesive Clip) was rated 1.16 ± 1.53, on average, at 90 days on an 11-point rating scale (0 = very comfortable, 10 = very uncomfortable). All PROs demonstrated statistically significant symptomatic improvement at 90 days following implant of the micro-IPG. LIMITATIONS:   Limitations of this study include the lack of long-term results (beyond 90 days) and a relatively small sample size of 35 patients who were part of the analysis; additionally, there was no control arm or randomization as this was a single-arm study, without a comparator, designed to document the efficacy and safety of the device. Therefore, no direct comparisons to other SCS systems were possible. CONCLUSIONS: This clinical study demonstrated profound leg and low back pain relief in terms of overall pain reduction, as well as the proportion of therapy responders. The study patients reported the wearable aspects of the system to be very comfortable.


Asunto(s)
Dolor Crónico , Dolor de la Región Lumbar , Neuralgia , Dolor Intratable , Estimulación de la Médula Espinal , Humanos , Dolor de la Región Lumbar/terapia , Estudios Prospectivos , Resultado del Tratamiento , Dimensión del Dolor/métodos , Dolor Crónico/terapia , Estimulación de la Médula Espinal/métodos , Neuralgia/terapia , Médula Espinal
8.
Front Hum Neurosci ; 16: 862443, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35496068

RESUMEN

Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive alternative to vagus nerve stimulation (VNS) with implantable devices, has shown promise in treating disorders such as depression, migraine, and insomnia. Studies of these disorders with resting-state functional magnetic resonance imaging (MRI) (rsfMRI) have found sustained changes in resting-state functional connectivity (rsFC) in patients treated with low frequency (1-20 Hz) taVNS. A recent study has reported reductions in pain scores in patients with rheumatoid arthritis after a 12-week treatment of high-frequency (20 kHz) sub-threshold taVNS. However, no studies to date have examined the effects of high-frequency sub-threshold taVNS on rsFC. The objective of this study was to determine whether high-frequency sub-threshold taVNS induces changes in rsFC using seed regions from the cingulate cortex and insula, brain regions that play a key role in interoception and processing of pain. With a single-blind placebo-controlled repeated measures experimental design, rsfMRI scans were acquired before and after 15 min of either sub-threshold taVNS treatment or a sham control. Significant taVNS-related changes in functional connections to the cingulate cortex were detected between the anterior cingulate cortex and right superior temporal gyrus and between the midcingulate cortex and right inferior parietal lobule. In addition, significant changes in functional connections to the insula were detected between the posterior insula and right precuneus and between the anterior insula and right cuneus gyrus. These results suggest that high-frequency sub-threshold taVNS can lead to sustained effects on the rsFC of brain regions involved in interoception and processing of pain in a cohort of healthy subjects. This study lays the foundation for future rsfMRI studies of high-frequency sub-threshold taVNS in clinical populations.

9.
Sci Rep ; 11(1): 24018, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34912017

RESUMEN

Transcutaneous auricular vagus nerve stimulation (taVNS) has shown promise as a non-invasive alternative to vagus nerve stimulation (VNS) with implantable devices, which has been used to treat drug-resistant epilepsy and treatment-resistant depression. Prior work has used functional MRI to investigate the brain response to taVNS, and more recent work has also demonstrated potential therapeutic effects of high-frequency sub-threshold taVNS in rheumatoid arthritis. However, no studies to date have measured the effects of high-frequency sub-threshold taVNS on cerebral blood flow (CBF). The objective of this study was to determine whether high-frequency (20 kHz) sub-threshold taVNS induces significant changes in CBF, a promising metric for the assessment of the sustained effects of taVNS. Arterial spin labeling (ASL) MRI scans were performed on 20 healthy subjects in a single-blind placebo-controlled repeated measures experimental design. The ASL scans were performed before and after 15 min of either sub-threshold taVNS treatment or a sham control. taVNS induced significant changes in CBF in the superior posterior cerebellum that were largely localized to bilateral Crus I and Crus II. Post hoc analyses showed that the changes were driven by a treatment-related decrease in CBF. Fifteen minutes of high-frequency sub-threshold taVNS can induce sustained CBF decreases in the bilateral posterior cerebellum in a cohort of healthy subjects. This study lays the foundation for future studies in clinical populations, and also supports the use of ASL measures of CBF for the assessment of the sustained effects of taVNS.


Asunto(s)
Encéfalo/irrigación sanguínea , Circulación Cerebrovascular , Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Adulto , Encéfalo/diagnóstico por imagen , Análisis de Datos , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Estimulación Eléctrica Transcutánea del Nervio/métodos , Estimulación del Nervio Vago/métodos , Adulto Joven
10.
Neuromodulation ; 13(1): 37-43, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21992763

RESUMEN

Objective. Motor cortex stimulation (MCS) is increasingly being utilized for the treatment of intractable pain. While the risks of MCS are relatively low, focal or generalized seizures may be produced during programming of MCS systems. Occasionally, patients may experience seizures hours after programming. In order to understand this phenomenon better, we undertook a retrospective analysis of five patients in whom seizures limited the efficacy of MCS. Methods. A retrospective chart review was performed in five patients who underwent MCS between 2002 and 2006 and who had persistent seizures that limited programming. Results. The initial seizure during programming in these patients occurred at amplitudes of between 4.8 and 6.6 V. Four patients experienced generalized tonic-clonic seizures and one patient experienced focal seizures. Subsequent seizures occurred at amplitudes of between 4.4 and 5.5 V, with a tendency for seizure thresholds to progressively decrease. All five patients experienced at least one seizure occurring many minutes to hours after programming, with no side-effects initially observed once the final settings had been programmed. Four out of five patients were programmed with frequencies documented at between 70 and 90 Hz; documentation on frequency was unavailable for the remaining patient. One patient never achieved adequate pain relief and had the MCS system explanted. Conclusions. Despite the overall safety of MCS for the treatment of chronic pain, seizures during and after programming are a serious risk that should be anticipated. In this group of patients, seizures were associated only with stimulus rates between 70 and 90 Hz. No patient developed chronic epilepsy from the stimulation.

11.
Oper Neurosurg (Hagerstown) ; 19(3): 302-312, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31858143

RESUMEN

BACKGROUND: Efficacy in deep brain stimulation (DBS) is dependent on precise positioning of electrodes within the brain. Intraoperative fluoroscopy, computed tomography (CT), or magnetic resonance imaging are used for stereotactic intraoperative localization (StIL), but the utility of biplanar X-ray has not been evaluated in detail. OBJECTIVE: To determine if analysis of orthogonal biplanar X-rays using graphical analysis (GA), ray tracing (RT), and/or perspective projection (PP) can be utilized for StIL. METHODS: A review of electrode tip positions comparing postoperative CT to X-ray methods was performed for DBS operations containing orthogonal biplanar X-ray with referential spheres and pins. RESULTS: Euclidean (Re) errors for final DBS electrode position on intraoperative X-rays vs postoperative CT using GA, RT, and PP methods averaged 1.58 mm (±0.75), 0.74 mm (±0.45), and 1.07 mm (±0.64), respectively (n = 56). GA was more accurate with a ventriculogram. RT and PP predicted positions that correlated with third ventricular structures on ventriculogram cases. RT was the most stable but required knowledge of the geometric setup. PP was more flexible than RT but required well-distributed reference points. A single case using the O-arm demonstrated Re errors of 0.43 mm and 0.28 mm for RT and PP, respectively. In addition, these techniques could also be used to calculate directional electrode rotation. CONCLUSION: GA, RT, and PP can be employed for precise StIL during DBS using orthogonal biplanar X-ray. These methods may be generalized to other stereotactic procedures or instances of biplanar imaging such as angiograms, radiosurgery, or injection therapeutics.


Asunto(s)
Estimulación Encefálica Profunda , Cirugía Asistida por Computador , Electrodos Implantados , Humanos , Imagenología Tridimensional , Tomografía Computarizada por Rayos X , Rayos X
12.
Hum Pathol ; 34(7): 714-6, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12874769

RESUMEN

A 17-year-old woman with intractable seizures since infancy underwent resection of an epileptic focus in the left frontal cortex. The cytoplasm of many cortical astrocytes contained amorphous eosinophilic inclusions, which ultrastructurally were non-membrane bound and consisted of densely packed osmiophilic material. Similar inclusions have previously been observed, at autopsy, in patients with unspecified mental retardation and various brain malformations. The present report is unique in that the inclusions were detected in the resected specimen of an epileptic focus. The patient is neurologically intact except for the seizures that presently are totally controlled by the surgery. The pathogenesis of these inclusions is unclear. The fact they occurred in an epileptic focus raises the possibility that prolonged seizures or its underlying precipitating factors may cause conglutination of an indeterminate element of the protoplasmic astrocytes resulting in inclusion formation.


Asunto(s)
Astrocitos/patología , Epilepsia/patología , Cuerpos de Inclusión/ultraestructura , Adolescente , Biomarcadores/análisis , Corteza Cerebral/fisiopatología , Corteza Cerebral/cirugía , Epilepsia/complicaciones , Epilepsia/cirugía , Femenino , Histocitoquímica , Humanos , Cuerpos de Inclusión/química , Resultado del Tratamiento
13.
J Neurosurg ; 99(3): 566-71, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12959446

RESUMEN

Holmes tremor is characterized by resting, postural, and intention tremor. Deep brain stimulation (DBS) of both the nucleus ventralis intermedius (Vim) and the subthalamic nucleus (STN) may be required to control these three tremor components. A 79-year-old man presented with a long-standing combination of resting, postural, and intention tremor, which was associated with severe disability and was resistant to medical treatment. Neuroimaging studies failed to reveal areas of discrete brain damage. A DBS device was placed in the Vim and produced an improvement in both the intention and postural tremor, but there was residual resting tremor, as demonstrated by clinical observation and quantitative tremor analysis. Placement of an additional DBS device in the STN resolved the resting tremor. Stimulation of the Vim or STN alone failed to produce global resolution of mixed tremor, whereas combined Vim-STN stimulation produced global relief without creating noticeable side effects. Combined Vim-STN stimulation can thus be a safe and effective treatment for Holmes tremor.


Asunto(s)
Estimulación Eléctrica/métodos , Técnicas Estereotáxicas , Núcleo Subtalámico/cirugía , Temblor/cirugía , Núcleos Talámicos Ventrales/cirugía , Anciano , Electrodos Implantados , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Núcleo Subtalámico/fisiopatología , Núcleos Talámicos Ventrales/fisiopatología
14.
J Neurosurg ; 100(4): 611-8, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15070113

RESUMEN

OBJECT: The subthalamic nucleus (STN) is a key structure for motor control through the basal ganglia. The aim of this study was to show that the STN in patients with Parkinson disease (PD) has a somatotopic organization similar to that in nonhuman primates. METHODS: A functional map of the STN was obtained using electrophysiological microrecording during placement of deep brain stimulation (DBS) electrodes in patients with PD. Magnetic resonance imaging was combined with ventriculography and intraoperative x-ray film to assess the position of the electrodes and the STN units, which were activated by limb movements to map the sensorimotor region of the STN. Each activated cell was located relative to the anterior commissure-posterior commissure line. Three-dimensional coordinates of the cells were analyzed statistically to determine whether those cells activated by movements of the arm and leg were segregated spatially. Three hundred seventy-nine microelectrode tracks were created during placement of 71 DBS electrodes in 44 consecutive patients. Somatosensory driving was found in 288 tracks. The authors identified and localized 1213 movement-related cells and recorded responses from 29 orofacial cells, 480 arm-related cells, 558 leg-related cells, and 146 cells responsive to both arm and leg movements. Leg-related cells were localized in medial (p < 0.0001) and ventral (p < 0.0004) positions and tended to be situated anteriorly (p = 0.063) relative to arm-related cells. CONCLUSIONS: Evidence of somatotopic organization in the STN in patients with PD supports the current theory of highly segregated loops integrating cortex-basal ganglia connections. These loops are preserved in chronic degenerative diseases such as PD, but may subserve a distorted body map. This finding also supports the relevance of microelectrode mapping in the optimal placement of DBS electrodes along the subthalamic homunculus.


Asunto(s)
Mapeo Encefálico , Enfermedad de Parkinson/fisiopatología , Núcleo Subtalámico/patología , Núcleo Subtalámico/fisiología , Estimulación Eléctrica , Electrodos , Electrofisiología , Humanos , Estudios Retrospectivos
15.
J Neurosurg ; 97(6): 1271-5, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12507122

RESUMEN

OBJECT: The goal of this study was to determine the effect of hydrocephalus on cerebrospinal fluid (CSF) production rates in patients with acute and chronic hydrocephalus. METHODS: The authors studied CSF production both in patients presenting with acute and chronic hydrocephalus, and patients with Parkinson disease (PD) of a similar mean age, whose CSF production was known to be normal. A modification of the Masserman method was used to measure CSF production through a ventricular catheter. The CSF production rates (means +/- standard deviations) in the three groups were then compared. The patients with PD had a mean CSF production rate of 0.42 +/- 0.13 ml/minute; this value lies within the normal range measured using this technique. Patients with acute hydrocephalus had a similar CSF production rate of 0.4 +/- 0.13 ml/minute, whereas patients with chronic hydrocephalus had a significantly decreased mean CSF production rate of 0.25 +/- 0.08 ml/minute. CONCLUSIONS: The authors postulate that chronic increased intracranial pressure causes downregulation of CSF production.


Asunto(s)
Líquido Cefalorraquídeo/metabolismo , Hidrocefalia/metabolismo , Enfermedad Aguda , Adolescente , Adulto , Anciano , Circulación Cerebrovascular , Niño , Plexo Coroideo/irrigación sanguínea , Plexo Coroideo/metabolismo , Enfermedad Crónica , Regulación hacia Abajo , Humanos , Presión Intracraneal/fisiología , Persona de Mediana Edad
16.
Perm J ; 17(4): 47-51, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24361021

RESUMEN

Deep brain stimulation is a rapidly expanding therapy initially designed for the treatment of movement disorders and pain syndromes. The therapy includes implantation of electrodes in specific targets of the brain, delivering programmable small and safe electric impulses, like a pacemaker, that modulates both local and broad neurologic networks. The effects are thought to primarily involve a focus in the brain, probably inhibitory, which then restores a network of neural circuitry. Psychiatric diseases can be refractory and severe, leading to high medical costs, significant morbidity, and even death. Whereas surgery for psychiatric disease used to include destructive procedures, deep brain stimulation allows safe, reversible, and adjustable treatment that can be tailored for each patient. Deep brain stimulation offers new hope for these unfortunate patients, and the preliminary results are promising.


Asunto(s)
Encéfalo , Estimulación Encefálica Profunda , Trastorno Obsesivo Compulsivo/terapia , Electrodos Implantados , Humanos , Red Nerviosa
17.
J Radiosurg SBRT ; 1(3): 247-252, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-29296323

RESUMEN

Epidermoid cysts of the central nervous system may be difficult to resect and recurrent lesions may be impossible to control with open surgery. We identified three patients with recurrent epidermoids treated with radiosurgery at Stanford. One patient with a middle fossa lesion that had been resected twice in six years, presented with a 4.5 cubic centimeter recurrence and was treated with radiosurgery. Follow-up scans over three years showed no additional growth. Two patients had spinal lesions. One had undergone numerous, unsuccessful procedures in the three years before the radiosurgical treatment and subsequent open resection of a 3.8 cubic centimeter recurrence. His scans remain unremarkable eight years after treatment. The other, with acaudaequina mass, had required five open resections in 11 years. Following the last resection, the residual was treated radiosurgically. The lesion eventually increased in size, but became symptomatic only after seven years. A second course of radiosurgery was delivered. We believe that stereotactic radiosurgery can be safe for some epidermoid cysts of the central nervous system, decreases their growth rate, and may facilitate subsequent open surgery. It should be considered for select individuals with recurrent or unresectable lesions.

18.
Mov Disord ; 21(5): 673-8, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16440333

RESUMEN

It is widely accepted that patients with Parkinson's disease experience immediate but temporary improvement in motor signs after surgical implantation of subthalamic nucleus (STN) deep brain stimulating electrodes before the electrodes are activated, although this has never been formally studied. Based on anecdotal observations that limb mobility improved just after microelectrode recording (MER) during deep brain stimulation (DBS) procedures, we designed a prospective study to measure upper extremity bradykinesia using a quantitative measure of angular velocity. Measurements were made pre- and post-MER and during intraoperative DBS. Analysis of 98 STN DBS procedures performed on 61 patients showed that MER did not create adverse clinical symptoms despite concerns that MER increases morbidity. Quantitative upper extremity bradykinesia improved after MER alone, and further improvement was seen during intraoperative DBS. Electrophysiological data from each case were then compared to the improvement in bradykinesia post-MER alone and a significant correlation was found between the improvement in arm bradykinesia, the number of passes through the STN with somatosensory driving, and also with the number of arm cells with somatosensory driving in the STN, but not with total number of passes, total number of passes through the STN, or total number of cells with somatosensory driving in the STN. This study demonstrates that there is a significant improvement in upper extremity bradykinesia just after MER, before inserting or activating the DBS electrode in patients with Parkinson's disease who undergo STN DBS.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Hipocinesia/fisiopatología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/cirugía , Anciano , Femenino , Humanos , Hipocinesia/etiología , Periodo Intraoperatorio/métodos , Masculino , Microelectrodos , Persona de Mediana Edad , Examen Neurológico , Reproducibilidad de los Resultados , Proyectos de Investigación , Estudios Retrospectivos
19.
Exp Neurol ; 197(1): 244-51, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16289053

RESUMEN

Power spectra from local field potentials (LFPs) recorded post-operatively from the deep brain stimulation (DBS) macroelectrode show prominence of the beta rhythm (11-30 Hz) in untreated Parkinson's disease (PD). Dopaminergic medication and movement attenuate this beta band in PD. In this pilot study of six sides in four patients, we recorded LFPs from the DBS electrode in untreated PD patients in the operating room. In all cases, there was a peak in the time-frequency spectrogram in the beta frequency range when the patients were at rest, which was associated with attenuation in the same range with movement. The actual frequency range and the strength of the beta peak varied among cases. In two patients, intra-operative constraints permitted recording of LFPs at rest, before and immediately after subthalamic nucleus (STN) DBS. In both patients we documented that STN DBS caused a significant attenuation in power in the beta band at rest that persisted for 15-25 s after DBS had been turned off (P < 0.01). From one case, our data suggest that the beta rhythm attenuation was most prominent within the STN itself. This study shows for the first time that STN DBS attenuates the power in the prominent beta band recorded in the STN of patients with PD. These pilot findings raise the interesting possibility of using this biomarker for closed loop DBS or neuromodulation.


Asunto(s)
Ritmo beta , Estimulación Encefálica Profunda , Enfermedad de Parkinson/fisiopatología , Núcleo Subtalámico/fisiología , Electrodos Implantados , Humanos , Periodo Intraoperatorio , Potenciales de la Membrana/fisiología , Procedimientos Neuroquirúrgicos , Enfermedad de Parkinson/cirugía , Proyectos Piloto
20.
Mov Disord ; 21(8): 1088-97, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16671073

RESUMEN

Postural control requires precise integration of sensory inputs and motor output, but clinical assessments of postural control do not differentiate between these. Previously, we found that this differentiation is important in Parkinson's disease (PD) as there was a dissociated effect of medication versus pallidotomy on sensory aspects of postural instability. In this study, we address several questions that emerged from that work in 28 different patients with PD off and on medication, before and after bilateral subthalamic nucleus deep brain stimulation (B-STN DBS): (1) In a different cohort is there still an unusually large percentage of patients with postural instability in sensory-deprived conditions? (2) Are more specific measures of motor aspects of postural control using dynamic posturography (postural movement velocity [MV] and reaction time [RT]) abnormal in PD as seen clinically using the Postural Instability and Gait Disorder score of the Unified Parkinson's Disease Rating Scale? (3) What is the effect of B-STN DBS versus medication on sensory versus motor aspects of postural instability in PD? The results included (1) substantially more patients (39%) versus controls (5%) exhibited postural instability in conditions of limited sensory feedback; (2) postural MV and postural RT were abnormal off medication preoperatively (N(subset) = 23; P < 0.001 for both); (3) B-STN DBS improved abnormal sensory aspects of postural instability (P < 0.05) and postural MV (P = 0.005), whereas medication did not. Neither B-STN DBS nor medication improved postural RT. For the group as a whole, STN DBS plus medication was better therapy than medication preoperatively for sensory aspects of postural control (P = 0.003).


Asunto(s)
Encéfalo/fisiopatología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Postura , Núcleo Subtalámico/fisiopatología , Estimulación Encefálica Profunda , Lateralidad Funcional , Humanos , Persona de Mediana Edad , Actividad Motora , Tiempo de Reacción , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA