Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cancer Cell Int ; 24(1): 251, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39020347

RESUMEN

Hypoxia represents one of the key factors that stimulates the growth of leukemic cells in their niche. Leukemic cells in hypoxic conditions are forced to reprogram their original transcriptome, miRNome, and metabolome. How the coupling of microRNAs (miRNAs)/mRNAs helps to maintain or progress the leukemic status is still not fully described. MiRNAs regulate practically all biological processes within cells and play a crucial role in the development/progression of leukemia. In the present study, we aimed to uncover the impact of hsa-miR-155-5p (miR-155, MIR155HG) on the metabolism, proliferation, and mRNA/miRNA network of human chronic lymphocytic leukemia cells (CLL) in hypoxic conditions. As a model of CLL, we used the human MEC-1 cell line where we deleted mature miR-155 with CRISPR/Cas9. We determined that miR-155 deficiency in leukemic MEC-1 cells results in lower proliferation even in hypoxic conditions in comparison to MEC-1 control cells. Additionally, in MEC-1 miR-155 deficient cells we observed decreased number of populations of cells in S phase. The miR-155 deficiency under hypoxic conditions was accompanied by an increased apoptosis. We detected a stimulatory effect of miR-155 deficiency and hypoxia at the level of gene expression, seen in significant overexpression of EGLN1, GLUT1, GLUT3 in MEC-1 miR-155 deficient cells. MiR-155 deficiency and hypoxia resulted in increase of glucose and lactate uptake. Pyruvate, ETC and ATP were reduced. To conclude, miR-155 deficiency and hypoxia affects glucose and lactate metabolism by stimulating the expression of glucose transporters as GLUT1, GLUT3, and EGLN1 [Hypoxia-inducible factor prolyl hydroxylase 2 (HIF-PH2)] genes in the MEC-1 cells.

2.
Biomacromolecules ; 25(7): 4192-4202, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38917475

RESUMEN

The permeability and responsiveness of polymer membranes are absolutely relevant in the design of polymersomes for cargo delivery. Accordingly, we herein correlate the structural features, permeability, and responsiveness of doxorubicin-loaded (DOX-loaded) nonresponsive and stimuli-responsive polymersomes with their in vitro and in vivo antitumor performance. Polymer vesicles were produced using amphiphilic block copolymers containing a hydrophilic poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) segment linked to poly[N-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA, nonresponsive block), poly[4-(4,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)benzyl methacrylate] [PbAPE, reactive oxygen species (ROS)-responsive block], or poly[2-(diisopropylamino)ethyl methacrylate] (PDPA, pH-responsive block). The PDPA-based polymersomes demonstrated outstanding biological performance with antitumor activity notably enhanced compared to their counterparts. We attribute this behavior to a fast-triggered DOX release in acidic tumor environments as induced by pH-responsive polymersome disassembly at pH < 6.8. Possibly, an insufficient ROS concentration in the selected tumor model attenuates the rate of ROS-responsive vesicle degradation, whereas the nonresponsive nature of the PPPhA block remarkably impacts the performance of such potential nanomedicines.


Asunto(s)
Doxorrubicina , Doxorrubicina/farmacología , Doxorrubicina/química , Humanos , Animales , Ratones , Permeabilidad de la Membrana Celular/efectos de los fármacos , Polímeros/química , Polímeros/farmacología , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Portadores de Fármacos/química , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Acrilamidas/química , Acrilamidas/farmacología , Concentración de Iones de Hidrógeno
3.
Front Immunol ; 15: 1405210, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947315

RESUMEN

In bone marrow transplantation (BMT), hematopoiesis-reconstituting cells are introduced following myeloablative treatment, which eradicates existing hematopoietic cells and disrupts stroma within the hematopoietic tissue. Both hematopoietic cells and stroma then undergo regeneration. Our study compares the outcomes of a second BMT administered to mice shortly after myeloablative treatment and the first BMT, with those of a second BMT administered to mice experiencing robust hematopoietic regeneration after the initial transplant. We evaluated the efficacy of the second BMT in terms of engraftment efficiency, types of generated blood cells, and longevity of function. Our findings show that regenerating hematopoiesis readily accommodates newly transplanted stem cells, including those endowed with a robust capacity for generating B and T cells. Importantly, our investigation uncovered a window for preferential engraftment of transplanted stem cells coinciding with the resumption of blood cell production. Repeated BMT could intensify hematopoiesis reconstitution and enable therapeutic administration of genetically modified autologous stem cells.


Asunto(s)
Trasplante de Médula Ósea , Hematopoyesis , Animales , Trasplante de Médula Ósea/métodos , Ratones , Células Madre Hematopoyéticas/inmunología , Ratones Endogámicos C57BL , Reconstitución Inmune , Regeneración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA