Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(42): 16957-62, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23027960

RESUMEN

We present a unique proxy for the reconstruction of variation in precipitation over the Amazon: oxygen isotope ratios in annual rings in tropical cedar (Cedrela odorata). A century-long record from northern Bolivia shows that tree rings preserve the signal of oxygen isotopes in precipitation during the wet season, with weaker influences of temperature and vapor pressure. Tree ring δ(18)O correlates strongly with δ(18)O in precipitation from distant stations in the center and west of the basin, and with Andean ice core δ(18)O showing that the signal is coherent over large areas. The signal correlates most strongly with basin-wide precipitation and Amazon river discharge. We attribute the strength of this (negative) correlation mainly to the cumulative rainout processes of oxygen isotopes (Rayleigh distillation) in air parcels during westward transport across the basin. We further find a clear signature of the El Niño-Southern Oscillation (ENSO) in the record, with strong ENSO influences over recent decades, but weaker influence from 1925 to 1975 indicating decadal scale variation in the controls on the hydrological cycle. The record exhibits a significant increase in δ(18)O over the 20th century consistent with increases in Andean δ(18)O ice core and lake records, which we tentatively attribute to increased water vapor transport into the basin. Taking these data together, our record reveals a fresh path to diagnose and improve our understanding of variation and trends of the hydrological cycle of the world's largest river catchment.


Asunto(s)
Cedrela/química , Clima , El Niño Oscilación del Sur , Isótopos de Oxígeno/análisis , Tallos de la Planta/química , Lluvia/química , Bolivia , Factores de Tiempo
2.
Glob Chang Biol ; 20(12): 3700-12, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25156251

RESUMEN

The increasing carbon dioxide (CO2 ) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree-ring sites located across Europe are investigated to determine the intrinsic water-use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX-Bern 1.0) that integrates numerous ecosystem and land-atmosphere exchange processes in a theoretical framework. The spatial pattern of tree-ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south-to-north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil-water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation-climate feedbacks are currently still poorly constrained by observational data.


Asunto(s)
Ciclo del Carbono/fisiología , Dióxido de Carbono/metabolismo , Cambio Climático , Bosques , Modelos Teóricos , Árboles/crecimiento & desarrollo , Ciclo Hidrológico/fisiología , Isótopos de Carbono/análisis , Europa (Continente) , Geografía , Factores de Tiempo
3.
PLoS One ; 11(4): e0153888, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27100092

RESUMEN

Assessments of climate change impacts on forests and their vitality are essential for semi-arid environments such as Central Asia, where the mountain regions belong to the globally important biodiversity hotspots. Alterations in species distribution or drought-induced tree mortality might not only result in a loss of biodiversity but also in a loss of other ecosystem services. Here, we evaluate spatial trends and patterns of the growth-climate relationship in a tree-ring network comprising 33 juniper sites from the northern Pamir-Alay and Tien Shan mountain ranges in eastern Uzbekistan and across Kyrgyzstan for the common period 1935-2011. Junipers growing at lower elevations are sensitive to summer drought, which has increased in intensity during the studied period. At higher elevations, juniper growth, previously favored by warm summer temperatures, has in the recent few decades become negatively affected by increasing summer aridity. Moreover, response shifts are observed during all seasons. Rising temperatures and alterations in precipitation patterns during the past eight decades can account for the observed increase in drought stress of junipers at all altitudes. The implications of our findings are vital for the application of adequate long-term measures of ecosystem conservation, but also for paleo-climatic approaches and coupled climate-vegetation model simulations for Central Asia.


Asunto(s)
Cambio Climático , Sequías , Juniperus/fisiología , Estrés Fisiológico , Árboles/crecimiento & desarrollo , Asia , Biodiversidad , Ecosistema
4.
PLoS One ; 11(7): e0158346, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27467508

RESUMEN

This paper introduces a new approach-the Principal Component Gradient Analysis (PCGA)-to detect ecological gradients in time-series populations, i.e. several time-series originating from different individuals of a population. Detection of ecological gradients is of particular importance when dealing with time-series from heterogeneous populations which express differing trends. PCGA makes use of polar coordinates of loadings from the first two axes obtained by principal component analysis (PCA) to define groups of similar trends. Based on the mean inter-series correlation (rbar) the gain of increasing a common underlying signal by PCGA groups is quantified using Monte Carlo Simulations. In terms of validation PCGA is compared to three other existing approaches. Focusing on dendrochronological examples, PCGA is shown to correctly determine population gradients and in particular cases to be advantageous over other considered methods. Furthermore, PCGA groups in each example allowed for enhancing the strength of a common underlying signal and comparably well as hierarchical cluster analysis. Our results indicate that PCGA potentially allows for a better understanding of mechanisms causing time-series population gradients as well as objectively enhancing the performance of climate transfer functions in dendroclimatology. While our examples highlight the relevance of PCGA to the field of dendrochronology, we believe that also other disciplines working with data of comparable structure may benefit from PCGA.


Asunto(s)
Ecología , Método de Montecarlo , Análisis de Componente Principal
5.
Anal Chem ; 79(12): 4603-12, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17503767

RESUMEN

Interlaboratory comparisons involving nine European stable isotope laboratories have shown that the routine methods of cellulose preparation resulted in data that generally agreed within the precision of the isotope ratio mass spectrometry (IRMS) method used: +/-0.2 per thousand for carbon and +/-0.3 per thousand for oxygen. For carbon, the results suggest that holocellulose is enriched up to 0.39 per thousand in 13C relative to the purified alpha-cellulose. The comparisons of IRMS measurements of carbon on cellulose, sugars, and starches showed low deviations from -0.23 to +0.23 per thousand between laboratories. For oxygen, IRMS measurements varied between means from -0.39 to 0.58 per thousand, -0.89 to 0.42 per thousand, and -1.30 to 1.16 per thousand for celluloses, sugars, and starches, respectively. This can be explained by different effects arising from the use of low- or high-temperature pyrolysis and by the variation between laboratories in the procedures used for drying and storage of samples. The results of analyses of nonexchangeable hydrogen are very similar in means with standard deviations between individual methods from +/-2.7 to +/-4.9 per thousand. The use of a one-point calibration (IAEA-CH7) gave significant positive offsets in delta2H values up to 6 per thousand. Detailed analysis of the results allows us to make the following recommendations in order to increase quality and compatibility of the common data bank: (1) removal of a pretreatment with organic solvents, (2) a purification step with 17% sodium hydroxide solution during cellulose preparation procedure, (3) measurements of oxygen isotopes under an argon hood, (4) use of calibration standard materials, which are of similar nature to that of the measured samples, and (5) using a two-point calibration method for reliable result calculation.


Asunto(s)
Carbohidratos/análisis , Celulosa/análisis , Isótopos/análisis , Espectrometría de Masas/métodos , Almidón/análisis , Madera , Calibración , Isótopos de Carbono/análisis , Celulosa/química , Deuterio/análisis , Compuestos Orgánicos/química , Isótopos de Oxígeno/análisis , Hidróxido de Sodio/química , Solventes/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA