Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurosci ; 29(40): 12542-57, 2009 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-19812329

RESUMEN

Dopaminergic neurons in the mesodiencephalon (mdDA neurons) make precise synaptic connections with targets in the forebrain via the mesostriatal, mesolimbic, and mesoprefrontal pathways. Because of the functional importance of these remarkably complex ascending axon pathways and their implication in human disease, the mechanisms underlying the development of these connections are of considerable interest. Despite extensive in vitro studies, the molecular determinants that ensure the perfect formation of these pathways in vivo remain mostly unknown. Here, we determine the embryonic origin and ontogeny of the mouse mesoprefrontal pathway and use these data to reveal an unexpected requirement for semaphorin 3F (Sema3F) and its receptor neuropilin-2 (Npn-2) during mdDA pathway development using tissue culture approaches and analysis of sema3F(-/-), npn-2(-/-), and npn-2(-/-);TH-Cre mice. We show that Sema3F is a bifunctional guidance cue for mdDA axons, some of which have the remarkable ability to regulate their responsiveness to Sema3F as they develop. During early developmental stages, Sema3F chemorepulsion controls previously uncharacterized aspects of mdDA pathway development through both Npn-2-dependent (axon fasciculation and channeling) and Npn-2-independent (rostral growth) mechanisms. Later on, chemoattraction mediated by Sema3F and Npn-2 is required to orient mdDA axon projections in the cortical plate of the medial prefrontal cortex. This latter finding demonstrates that regulation of axon orientation in the target field occurs by chemoattractive mechanisms, and this is likely to also apply to other neural systems. In all, this study provides a framework for additional dissection of the molecular basis of mdDA pathway development and disease.


Asunto(s)
Axones/fisiología , Tipificación del Cuerpo/fisiología , Diencéfalo/embriología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuropilina-2/metabolismo , Prosencéfalo/embriología , Animales , Dopamina/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Neuritas/ultraestructura , Neuronas/citología , Transporte de Proteínas , Técnicas de Cultivo de Tejidos
2.
BMC Dev Biol ; 7: 98, 2007 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-17727705

RESUMEN

BACKGROUND: Although originally identified as embryonic axon guidance cues, semaphorins are now known to regulate multiple, distinct, processes crucial for neuronal network formation including axon growth and branching, dendritic morphology, and neuronal migration. Semaphorin7A (Sema7A), the only glycosylphosphatidylinositol-anchored semaphorin, promotes axon growth in vitro and is required for the proper growth of the mouse lateral olfactory tract in vivo. Sema7A has been postulated to signal through two unrelated receptors, an RGD-dependent alpha1beta1-integrin and a member of the plexin family, plexinC1. beta1-integrins underlie Sema7A-mediated axon growth and Sema7A function in the immune system. Sema7A-plexinC1 interactions have also been implicated in immune system function, but the neuronal role of this ligand-receptor pair remains to be explored. To gain further insight into the function(s) of Sema7A and plexinC1 during neural development, we present here a detailed analysis of Sema7A and plexinC1 expression in the developing rat nervous system. RESULTS: In situ hybridization revealed select expression of Sema7A and plexinC1 in multiple neuronal systems including: the olfactory system, the hypothalamo-hypophysial system, the hippocampus, the meso-diencephalic dopamine system, and the spinal cord. Within these systems, Sema7A and plexinC1 are often expressed in specific neuronal subsets. In general, Sema7A transcript levels increase significantly towards adulthood, whereas plexinC1 expression decreases as development proceeds.PlexinC1, but not Sema7A, is strongly expressed by distinct populations of migrating neurons. In addition to neuronal expression, Sema7A and plexinC1 transcripts were detected in oligodendrocytes and ependymal cells, respectively. CONCLUSION: Sema7A and plexinC1 expression patterns are consistent with these proteins serving both cooperative and separate functions during neural development. The prominent expression of plexinC1 in several distinct populations of migrating neurons suggests a novel role for this plexin family member in neuronal migration.


Asunto(s)
Axones/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/metabolismo , Receptores de Superficie Celular/biosíntesis , Semaforinas/biosíntesis , Algoritmos , Animales , Diferenciación Celular , Movimiento Celular , Bases de Datos de Proteínas , Iones , Ligandos , Conformación Molecular , Proteínas del Tejido Nervioso/fisiología , Ratas , Receptores de Superficie Celular/fisiología , Semaforinas/fisiología , Agua/química
3.
Nat Commun ; 8: 14666, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28281529

RESUMEN

The guidance protein Semaphorin7A (Sema7A) is required for the proper development of the immune and nervous systems. Despite strong expression in the mature brain, the role of Sema7A in the adult remains poorly defined. Here we show that Sema7A utilizes different cell surface receptors to control the proliferation and differentiation of neural progenitors in the adult hippocampal dentate gyrus (DG), one of the select regions of the mature brain where neurogenesis occurs. PlexinC1 is selectively expressed in early neural progenitors in the adult mouse DG and mediates the inhibitory effects of Sema7A on progenitor proliferation. Subsequently, during differentiation of adult-born DG granule cells, Sema7A promotes dendrite growth, complexity and spine development through ß1-subunit-containing integrin receptors. Our data identify Sema7A as a key regulator of adult hippocampal neurogenesis, providing an example of how differential receptor usage spatiotemporally controls and diversifies the effects of guidance cues in the adult brain.


Asunto(s)
Antígenos CD/genética , Giro Dentado/metabolismo , Integrina beta1/genética , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Receptores de Superficie Celular/genética , Semaforinas/genética , Animales , Antígenos CD/metabolismo , Diferenciación Celular , Proliferación Celular , Giro Dentado/citología , Giro Dentado/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Integrina beta1/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Neuronas/citología , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo , Transducción de Señal , Técnicas Estereotáxicas , Lóbulo Temporal/citología , Lóbulo Temporal/crecimiento & desarrollo , Lóbulo Temporal/metabolismo
4.
Arch Gen Psychiatry ; 60(9): 869-74, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12963668

RESUMEN

CONTEXT: A shared vulnerability to develop psychosis can be related to abnormalities in thalamic circuits in schizophrenia and bipolar disorder and could be a genetic link between these disorders. Homeobox genes involved in development and differentiation of the brain could play an important role in these disorders. OBJECTIVE: To determine whether patients with schizophrenia and bipolar disorder have different thalamic expression patterns of 2 homeobox genes, DLX1 and SHOX2 (alias OG12X or SHOT) compared with psychiatric and nonpsychiatric control subjects. DESIGN: Postmortem sections containing the thalamic mediodorsal nucleus were subjected to in situ hybridization with mouse Dlx1 and human SHOX2 RNA probes. The number of both DLX1- and SHOX2-positive neurons relative to Nissl-stained neurons was estimated in systematic randomly sampled volume probes. Patients Fifteen patients with schizophrenia, 15 with bipolar disorder with or without history of psychosis, 15 with major depressive disorder, and 15 nonpsychiatric controls from the Stanley Foundation Brain Bank. MAIN OUTCOME MEASURE: Relative numbers of DLX1- and SHOX2-positive neurons in patients with schizophrenia and bipolar disorder with history of psychosis compared with psychiatric and nonpsychiatric controls. RESULTS: Patients with a history of psychosis showed significantly decreased relative numbers of DLX1-positive neurons compared with patients without history of psychosis and nonpsychiatric controls (P =.02), whereas no differences could be found in relative numbers of SHOX2-positive neurons (P>.15). Results were obtained blind to diagnosis, symptoms, or any other variable except hemisphere. CONCLUSION: Decreased thalamic expression of DLX1 in schizophrenia and bipolar disorder with psychosis suggests shared genetic deficits in expression of this homeobox gene.


Asunto(s)
Trastorno Bipolar/genética , Genes Homeobox/genética , Proteínas de Homeodominio/metabolismo , Núcleo Talámico Mediodorsal/metabolismo , Esquizofrenia/genética , Adulto , Trastorno Bipolar/metabolismo , Colorantes , Femenino , Regulación de la Expresión Génica , Proteínas de Homeodominio/análisis , Proteínas de Homeodominio/genética , Humanos , Hibridación in Situ , Masculino , Núcleo Talámico Mediodorsal/química , Persona de Mediana Edad , Neuronas/química , Neuronas/metabolismo , Sondas ARN , Esquizofrenia/metabolismo
5.
Biol Open ; 4(8): 954-60, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26116657

RESUMEN

Homeodomain transcription factors regulate development of embryos and cellular physiology in adult systems. Paired-type homeodomain genes constitute a subclass that has been particularly implicated in establishment of neuronal identity in the mammalian nervous system. We isolated fragments of eight homeodomain genes of this subclass expressed in the stellate ganglion of the North Atlantic long finned squid Loligo pealei (lp) [Note: Loligo pealei has been officially renamed Doryteuthis pealei. For reasons of uniformity and clarity Loligo pealei (lp) is used here]. Of the most abundant ones, we cloned a full length cDNA which encoded the squid ortholog of the paired-type homeodomain proteins Phox2a/b. The homology of lpPhox2 to invertebrate and mammalian Phox2 was limited to the homeodomain. In contrast to mouse Phox2b, lpPhox2 was unable to transactivate the dopamine beta-hydroxylase (DBH) promoter in a heterologous mammalian transfection system. In vivo, lpPhox2 was expressed in the developing stellate ganglion of stage 27 squid embryos and continued to be expressed in the adult stellate neurons where expression was confined to the giant fiber lobe containing the neurons that form the giant axons. The expression of lpPhox was similarly timed and distributed as the Fmrf gene. Furthermore, the Fmrf upstream region contained putative Phox2a/b binding sites. These results suggest a role of lpPhox2 in the developmental specification of neuronal identity and regulation of neurons of the squid giant axon.

6.
Dev Cell ; 35(5): 537-552, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26651291

RESUMEN

Many guidance receptors are proteolytically cleaved by membrane-associated metalloproteases of the ADAM family, leading to the shedding of their ectodomains. Ectodomain shedding is crucial for receptor signaling and function, but how this process is controlled in neurons remains poorly understood. Here, we show that the transmembrane protein Lrig2 negatively regulates ADAM-mediated guidance receptor proteolysis in neurons. Lrig2 binds Neogenin, a receptor for repulsive guidance molecules (RGMs), and prevents premature Neogenin shedding by ADAM17 (TACE). RGMa reduces Lrig2-Neogenin interactions, providing ADAM17 access to Neogenin and allowing this protease to induce ectodomain shedding. Regulation of ADAM17-mediated Neogenin cleavage by Lrig2 is required for neurite growth inhibition by RGMa in vitro and for cortical neuron migration in vivo. Furthermore, knockdown of Lrig2 significantly improves CNS axon regeneration. Together, our data identify a unique ligand-gated mechanism to control receptor shedding by ADAMs and reveal functions for Lrigs in neuron migration and regenerative failure.


Asunto(s)
Proteínas ADAM/metabolismo , Axones/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Proteína ADAM17 , Animales , Células CHO , Membrana Celular/metabolismo , Movimiento Celular , Cricetulus , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ligandos , Glicoproteínas de Membrana , Ratones , Sistema Nervioso/embriología , Fenotipo , Estructura Terciaria de Proteína , Retina/embriología , Transducción de Señal
7.
Biol Open ; 3(1): 50-8, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24326188

RESUMEN

The giant fiber system of the squid Loligo pealei mediates the escape response and is an important neurobiological model. Here, we identified an abundant transcript in the stellate ganglion (SG) that encodes a FMRFamide precursor, and characterized FMRFamide and FI/LRF-amide peptides. To determine whether FMRFamide plays a role in the adult and hatchling giant fiber system, we studied the expression of the Fmrf gene and FMRFamide peptides. In stage 29 embryos and stage 30 hatchlings, Ffmr transcripts and FMRFamide peptide were low to undetectable in the SG, in contrast to groups of neurons intensely expressing the Fmrf gene in several brain lobes, including those that innervate the SG. In the adult SG the Fmrf gene was highly expressed, but the FMRFamide peptide was in low abundance. Intense staining for FMRFamide in the adult SG was confined to microneurons and fibers in the neuropil and to small fibers surrounding giant axons in stellar nerves. This shows that the Fmrf gene in the SG is strongly regulated post-hatching, and suggests that the FMRFamide precursor is incompletely processed in the adult SG. The data suggest that the SG only employs the Fmrf gene post-hatching and restricts the biosynthesis of FMRFamide, demonstrating that this peptide is not a major transmitter of the giant fiber system. This contrasts with brain lobes that engage FMRFamide embryonically as a regulatory peptide in multiple neuronal systems, including the afferent fibers that innervate the SG. The biological significance of these mechanisms may be to generate diversity within Fmrf-expressing systems in cephalopods.

8.
PLoS One ; 8(2): e55828, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23457482

RESUMEN

Neogenin has been implicated in a variety of developmental processes such as neurogenesis, neuronal differentiation, apoptosis, migration and axon guidance. Binding of repulsive guidance molecules (RGMs) to Neogenin inhibits axon outgrowth of different neuronal populations. This effect requires Neogenin to interact with co-receptors of the uncoordinated locomotion-5 (Unc5) family to activate downstream Rho signaling. Although previous studies have reported RGM, Neogenin, and/or Unc5 expression, a systematic comparison of RGM and Neogenin expression in the developing nervous system is lacking, especially at later developmental stages. Furthermore, information on RGM and Neogenin expression at the protein level is limited. To fill this void and to gain further insight into the role of RGM-Neogenin signaling during mouse neural development, we studied the expression of RGMa, RGMb, Neogenin and Unc5A-D using in situ hybridization, immunohistochemistry and RGMa section binding. Expression patterns in the primary olfactory system, cortex, hippocampus, habenula, and cerebellum were studied in more detail. Characteristic cell layer-specific expression patterns were detected for RGMa, RGMb, Neogenin and Unc5A-D. Furthermore, strong expression of RGMa, RGMb and Neogenin protein was found on several major axon tracts such as the primary olfactory projections, anterior commissure and fasciculus retroflexus. These data not only hint at a role for RGM-Neogenin signaling during the development of different neuronal systems, but also suggest that Neogenin partners with different Unc5 family members in different systems. Overall, the results presented here will serve as a framework for further dissection of the role of RGM-Neogenin signaling during neural development.


Asunto(s)
Encéfalo/metabolismo , Proteínas de la Membrana/análisis , Proteínas del Tejido Nervioso/análisis , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/ultraestructura , Células COS , Moléculas de Adhesión Celular Neuronal , Chlorocebus aethiops , Proteínas Ligadas a GPI/análisis , Proteínas Ligadas a GPI/genética , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética
9.
Development ; 131(5): 1145-55, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14973278

RESUMEN

The mesencephalic dopamine (mesDA) system is involved in the control of movement and behavior. The expression of Pitx3 in the brain is restricted to the mesDA system and the gene is induced relatively late, at E11.5, a time when tyrosine hydroxylase (Th) gene expression is initiated. We show here that, in the Pitx3-deficient aphakia (ak) mouse mutant, the mesDA system is malformed. Owing to the developmental failure of mesDA neurons in the lateral field of the midbrain, mesDA neurons are not found in the SNc and the projections to the caudate putamen are selectively lost. However, Pitx3 is expressed in all mesDA neurons in control animals. Therefore, mesDA neurons react specifically to the loss of Pitx3. Defects of motor control where not seen in the ak mice, suggesting that other neuronal systems compensate for the absence of the nigrostriatal pathway. However, an overall lower activity was observed. The results suggest that Pitx3 is specifically required for the formation of the SNc subfield at the onset of dopaminergic neuron differentiation.


Asunto(s)
Genes Homeobox , Proteínas de Homeodominio/genética , Sustancia Negra/embriología , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Animales , Afaquia/embriología , Afaquia/genética , Conducta Animal , Dopamina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Mesencéfalo/embriología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Neuronas/citología , Neuronas/metabolismo , Prosencéfalo/embriología
10.
Dev Dyn ; 225(3): 336-43, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12412018

RESUMEN

The genetic defect in Möbius syndrome 2 (MBS2, MIM 601471), a dominantly inherited disorder characterised by paralysis of the facial nerve, is situated at chromosome 3q21-q22. We characterised the cDNA and predicted protein, and examined the expression pattern during mouse embryogenesis of a positional candidate gene, PLEXIN-D1 (PLXND1). The cDNA for PLXND1 is 7095 base pairs in length, coding for a predicted protein of 1925 amino acids. The protein features all known domains of plexin family members, with the exception of the third Met-related sequence. Northern analysis revealed a very low expression of PLXND1 in adult mouse and adult human tissues. To investigate the expression of PlxnD1 during embryogenesis, RNA in situ hybridisation was performed on mouse embryos from various stages. This investigation revealed expression of PlxnD1 in cells from the central nervous system (CNS) and in vascular endothelium. Early expression in the CNS is located in the ganglia, cortical plate of the cortex, and striatum. At later embryologic stages, neural expression was also seen in the external granular layer of the cerebellum and several nerve nuclei. The expression in the vascular system resides solely in the endothelial cells of developing blood vessels. Based on our results, we suggest that this expression of a member of the plexin family in vascular endothelium could point toward a role in embryonic vasculogenesis.


Asunto(s)
Encéfalo/embriología , Endotelio Vascular/embriología , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas de Membrana/genética , Neovascularización Fisiológica/fisiología , Proteínas del Tejido Nervioso/genética , Secuencia de Aminoácidos , Animales , Northern Blotting , Encéfalo/fisiología , ADN Complementario , Endotelio Vascular/fisiología , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular , Ratones , Datos de Secuencia Molecular , ARN Mensajero/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA