Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chimia (Aarau) ; 73(3): 179-184, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30890213

RESUMEN

Mendeleev in his first publication ordered the chemical elements following an apparent periodicity of properties such as atomic volume and valence. The reactivity of the elements was only studied systematically many years later. To illustrate the systematic variation of kinetics across the periodic table we compare water residence times for monoatomic ions in aqueous solution. A tremendous variation of τH2O by over 20 orders of magnitude is found, ranging from ~10 ps to about 200 years. Apart from some small +2 and +3 cations, all main group elements have very short residence times <10 ns. Transition metal cations of the d-block have water residence times that depend on the electronic configuration. τH2O of lanthanide ions are surprisingly short with values of 10 ns and shorter. This is due to an equilibrium between 8 and 9 coordinated ions leading to a low energy of the transition state for the water exchange reaction.

2.
Chemistry ; 24(6): 1348-1357, 2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29120077

RESUMEN

Gadolinium-loaded nanomicelles show promise as future magnetic resonance imaging (MRI) contrast agents (CAs). Their increased size and high gadolinium (Gd) loading gives them an edge in proton relaxivity over smaller molecular Gd-complexes. Their size and stealth properties are fundamental for their long blood residence time, opening the possibility for use as blood-pool contrast agents. Using l-tyrosine as a three-functional scaffold we synthesized a nanostructure building block 8. The double C18 aliphatic chain on one side, Gd-1,4,7,10-tetraazacyclododecane-1-4-7-triacetic acid (Gd-DO3A) with access to bulk water in the center and 2 kDa PEG on the hydrophilic side gave the amphiphilic properties required for the core-shell nanomicellar architecture. The self-assembly into Gd-loaded monodispersed 10-20 nm nanomicelles occurred spontaneously in water. These nanomicelles (Tyr-MRI) display very high relaxivity at 29 mm-1 s-1 at low field strength and low cytotoxicity. Good contrast enhancement of the blood vessels and the heart together with prolonged circulation time in vivo, makes Tyr-MRI an excellent candidate for a new supramolecular blood-pool MRI CA.


Asunto(s)
Medios de Contraste/química , Complejos de Coordinación/química , Gadolinio/química , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Animales , Vasos Sanguíneos/diagnóstico por imagen , Línea Celular Tumoral , Supervivencia Celular , Medios de Contraste/toxicidad , Complejos de Coordinación/toxicidad , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Ratones Endogámicos C57BL , Micelas , Nanopartículas/toxicidad , Tamaño de la Partícula , Fantasmas de Imagen , Propiedades de Superficie , Distribución Tisular , Tirosina/química
3.
Inorg Chem ; 55(9): 4555-63, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27082861

RESUMEN

Water exchange kinetics of [Ln(L)(H2O)2](x) complexes (Ln = Pr, Nd, Dy, Tm, and Yb; L = DO3A and DTTA-Me) were studied by (17)O NMR spectroscopy as a function of temperature, pressure, and frequency and by (1)H nuclear magnetic relaxation dispersion. Water exchange rate constants of both complexes show a maximum at dysprosium. Water exchange on negatively charged complexes of the acyclic DTTA-Me ligand is much faster than on the neutral complexes of the macrocyclic DO3A. Small activation volumes |ΔV(⧧)| < 1 cm(3) mol(-1) measured for water exchange on [Ln(DO3A)(H2O)2] indicate an interchange type of mechanism (I) for the lanthanide complexes studied. In the case of [Ln(DTTA-Me)(H2O)2](-), a change in mechanism is detected from a dissociative mechanism (D, ΔV(⧧) = 7 cm(3) mol(-1)) for complexes with larger ions (Pr to Gd) to an interchange mechanism (Id, I; ΔV(⧧) = +1.8 and +0.4 cm(3) mol(-1)) for complexes with smaller ions (Dy and Tm).

4.
Inorg Chem ; 55(12): 6300-7, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27227690

RESUMEN

Water exchange kinetics on [Ln(AAZTAPh-NO2)(H2O)q](-) (Ln = Gd(3+), Dy(3+), or Tm(3+)) were determined by (1)H nuclear magnetic resonance (NMR) measurements. The number of inner-sphere water molecules was found to change from two to one when going from Dy(3+) to Tm(3+). The calculated water exchange rate constants obtained by variable-temperature proton transverse relaxation rates are 3.9 × 10(6), 0.46 × 10(6), and 0.014 × 10(6) s(-1) at 298 K for Gd(3+), Dy(3+), and Tm(3+), respectively. Variable-pressure measurements were used to assess the water exchange mechanism. The results indicate an associative and dissociative interchange mechanism for Gd(3+) and Dy(3+) complexes with ΔV(⧧) values of -1.4 and 1.9 cm(3) mol(-1), respectively. An associative activation mode (Ia or A mechanism) was obtained for the Tm(3+) complex (ΔV(⧧) = -5.6 cm(3) mol(-1)). Moreover, [Dy(AAZTAPh-NO2)(H2O)2](-) with a very high transverse relaxivity value was found as a potential candidate for negative contrast agents for high-field imaging applications.

5.
J Phys Chem A ; 120(32): 6467-76, 2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27459626

RESUMEN

The zero-field splitting (ZFS) parameters of the [Mn(EDTA)(H2O)](2-)·2H2O and [Mn(MeNO2A)(H2O)]·2H2O systems were estimated by using DFT and ab initio CASSCF/NEVPT2 calculations (EDTA = 2,2',2″,2‴-(ethane-1,2-diylbis(azanetriyl))tetraacetate; MeNO2A = 2,2'-(7-methyl-1,4,7-triazonane-1,4-diyl)diacetate). Subsequent molecular dynamics calculations performed within the atom-centered density matrix propagation (ADMP) approach provided access to the transient and static ZFS parameters, as well as to the correlation time of the transient ZFS. The calculated ZFS parameters present a reasonable agreement with the experimental values obtained from the analysis of (1)H relaxation data. The correlation times calculated for the two systems investigated turned out to be very short (τc ∼ 0.02-0.05 ps), which shows that the transient ZFS is modulated by molecular vibrations. On the contrary, the static ZFS is modulated by the rotation of the complexes in solution, which for the small complexes investigated here is characterized by rotational correlation times of τR ∼ 35-60 ps. As a result, electron spin relaxation in small Mn(2+) complexes is dominated by the static ZFS.

6.
Inorg Chem ; 54(4): 1974-82, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25632828

RESUMEN

Homoleptic acetonitrile complexes [Nd(CH3CN)9][Al(OC(CF3)3)4]3, [Dy(CH3CN)9][Al(OC(CF3)3)4]3, and [Tm(CH3CN)8][Al(OC(CF3)3)4]3 have been studied in anhydrous acetonitrile by (14)N and (1)H NMR relaxation. Solvent-exchange rate constants increase from (22 ± 6) × 10(6) s(-1) (Nd(3+)) and (160 ± 40) × 10(6) s(-1) (Dy(3+)) for the nonasolvated ions to (360 ± 40) × 10(6) s(-1) (Tm(3+)) for the octasolvated ions. Electron-spin relaxation of the lanthanide ions studied is similar to that found in aqua ions. This dependence on the binding properties of the coordinating molecules is consistent with the model proposed by Fries et al. for fast electron-spin relaxation of lanthanide ions other than Gd(3+).

7.
Inorg Chem ; 54(12): 5991-6003, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26030671

RESUMEN

To study the influence of hydrazine functions in the ligand skeleton, we designed the heptadentate HYD ligand (2,2',2″,2‴-(2,2'-(pyridine-2,6-diyl)bis(2-methylhydrazine-2,1,1-triyl)) tetraacetic acid) and compared the thermodynamic, kinetic, and relaxation properties of its Ln(3+) complexes to those of the parent pyridine (Py) analogues without hydrazine (Py = 2,6-pyridinebis(methanamine)-N,N,N',N'-tetraacetic acid). The protonation constants of HYD were determined by pH-potentiometric measurements, and assigned by a combination of UV-visible and NMR spectroscopies. The protonation sequence is rather unusual and illustrates that small structural changes can strongly influence ligand basicity. The first protonation step occurs on the pyridine nitrogen in the basic region, followed by two hydrazine nitrogens and the carboxylate groups at acidic pH. Contrary to Py, HYD self-aggregates through a pH-dependent process (from pH ca. 4). Thermodynamic stability constants have been obtained by pH-potentiometry and UV-visible spectrophotometry for various Ln(3+) and physiological cations (Zn(2+), Ca(2+), Cu(2+)). LnHYD stability constants show the same trend as those of LnDTPA complexes along the Ln(3+) series, with log K = 18.33 for Gd(3+), comparable to the Py analogue. CuHYD has a particularly high stability (log K > 19) preventing its determination from pH-potentiometric measurements. The stability constant of CuPy was also revisited and found to be underestimated in previous studies, highlighting that UV-visible spectrophotometry is often indispensable to obtain reliable stability constants for Cu(2+) chelates. The dissociation of GdL, assessed by studying the Cu(2+)-exchange reaction, occurs mainly via an acid-catalyzed process, with limited contribution from direct Cu(2+) attack. The kinetic inertness of GdHYD is remarkable for a linear bishydrated chelate; the 25-fold increase in the dissociation half-life with respect to the monohydrated commercial contrast agent GdDTPA (t1/2 = 5298 h for GdHYD vs 202 h for GdDTPA) is related to the rigidity of the HYD ligand due to the pyridine and methylated hydrazine functions of the backbone. A combined analysis of variable-temperature (17)O NMR and NMRD data on GdHYD yielded the microscopic parameters influencing relaxation properties. The high relaxivity (r1 = 7.7 mM(-1) s(-1) at 20 MHz, 25 °C) results from the bishydrated character of the complex combined with an optimized water exchange rate (kex(298) = 7.8 × 10(6) s(-1)). The two inner-sphere water molecules are not replaced through interaction with biological cations such as carbonate, citrate, and phosphate as monitored by (1)H relaxivity and luminescence lifetime measurements.


Asunto(s)
Gadolinio/química , Hidrazinas/química , Piridinas/química , Quelantes/química , Técnicas de Química Sintética , Cobre/química , Gadolinio DTPA , Semivida , Cinética , Elementos de la Serie de los Lantanoides/química , Ligandos , Espectroscopía de Resonancia Magnética , Potenciometría , Espectrofotometría Ultravioleta , Termodinámica
8.
J Biol Inorg Chem ; 19(2): 145-59, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24037218

RESUMEN

A compound binding three Gd(3+) ions, {Ph4[Gd(DTTA)(H2O)2](-) 3} (where H5DTTA is diethylenetriaminetetraacetic acid), has been synthesized around a hydrophobic center made up of four phenyl rings. In aqueous solution the molecules start to self-aggregate at concentrations well below 1 mM as shown by the increase of rotational correlation times and by the decrease of the translational self-diffusion constant. NMR spectra recorded in aqueous solution of the diamagnetic analogue {Ph4[Y(DTTA)(H2O)2](-)3} show that the aggregation is dynamic and due to intermolecular π-stacking interactions between the hydrophobic aromatic centers. From estimations of effective radii, it can be concluded that the aggregates are composed of two to three monomers. The paramagnetic {Ph4[Gd(DTTA)(H2O)2](-)3} exhibits concentration-dependent (1)H NMR relaxivities with high values of approximately 50 mM(-1) s(-1) (30 MHz, 25 °C) at gadolinium concentrations above 20 mM. A combined analysis of (1)H NMR dispersion profiles measured at different concentrations of the compound and (17)O NMR data measured at various temperatures was performed using different theoretical approaches. The fitted parameters showed that the increase in relaxivity with increasing concentration of the compound is due to slower global rotational motion and an increase of the Lipari-Szabo order parameter S(2).


Asunto(s)
Gadolinio/química , Compuestos Organometálicos/química , Ácido Pentético/análogos & derivados , Ligandos , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/síntesis química , Ácido Pentético/química
9.
Inorg Chem ; 53(13): 6985-94, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24922178

RESUMEN

Here, we describe the synthesis of the single amino acid chelator DOTAlaP and four of its derivatives. The corresponding gadolinium(III) complexes were investigated for their kinetic inertness, relaxometric properties at a range of fields and temperatures, water exchange rate, and interaction with human serum albumin (HSA). Derivatives with one inner-sphere water (q = 1) were determined to have a mean water residency time between 8 and 6 ns in phoshate-buffered saline at 37 °C. The corresponding europium complexes were also formed and used to obtain information on the hydration number of the corresponding coordination complexes. Two complexes capable of binding HSA were also synthesized, of which one, Gd(5b), contains no inner-sphere water, while the other derivative, Gd(4b), is a mixture of ca. 15% q =1 and 85% q = 0. In the presence of HSA, the latter displayed a very short mean water residency time (τM(310) = 2.4 ns) and enhanced relaxivity at intermediate and high fields. The kinetic inertness of Gd(4b) with respect to complex dissociation was decreased compared to its DOTAla analogue but still 100-fold more inert than [Gd(BOPTA)(H2O)](2-). Magnetic resonance imaging in mice showed that Gd(4b) was able to provide 38% better vessel to muscle contrast compared to the clinically used HSA binding agent MS-325.


Asunto(s)
Medios de Contraste/química , Gadolinio/química , Compuestos Heterocíclicos con 1 Anillo/química , Agua/química , Albúminas/química , Animales , Quelantes/química , Europio/química , Ibuprofeno/análogos & derivados , Ibuprofeno/química , Cinética , Imagen por Resonancia Magnética , Ratones , Unión Proteica
10.
Inorg Chem ; 52(6): 3268-79, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23437979

RESUMEN

Herein we report a detailed 1H and 17O relaxometric investigation of Mn(II) complexes with cyclen-based ligands such as 2-(1,4,7,10-tetraazacyclododecan-1-yl)acetic acid (DO1A), 2,2'-(1,4,7,10-tetraazacyclododecane-1,4-diyl)diacetic acid (1,4-DO2A), 2,2'-(1,4,7,10-tetraazacyclododecane-1,7-diyl)diacetic acid (1,7-DO2A), and 2,2',2"-(1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (DO3A). The Mn(II) complex with the heptadentate ligand DO3A does not have inner sphere water molecules (q = 0), and therefore, the metal ion is most likely seven-coordinate. The hexadentate DO2A ligand has two isomeric forms: 1,7-DO2A and 1,4-DO2A. The Mn(II) complex with 1,7-DO2A is predominantly six-coordinate (q = 0). In aqueous solutions of [Mn(1,4-DO2A)], a species with one coordinated water molecule (q = 1) prevails largely, whereas a q = 0 form represents only about 10% of the overall population. The Mn(II) complex of the pentadentate ligand DO1A also contains a coordinated water molecule. DFT calculations (B3LYP model) are used to obtain information about the structure of this family of closely related complexes in solution, as well as to determine theoretically the 17O and 1H hyperfine coupling constants responsible for the scalar contribution to 17O and 1H NMR relaxation rates and 17O NMR chemical shifts. These calculations provide 17O A/h values of ca. 40 × 10(6) rad s(-1), in good agreement with experimental data. The [Mn(1,4-DO2A)(H2O)] complex is endowed with a relatively fast water exchange rate (k(ex)298 = 11.3 × 10(8) s(-1)) in comparison to the [Mn(EDTA)(H2O)]2- analogue (k(ex)298 = 4.7 × 10(8) s(-1)), but about 5 times lower than that of the [Mn(DO1A)(H2O)]+ complex (k(ex)298 = 60 × 10(8) s(-1)). The water exchange rate measured for the latter complex represents the highest water exchange rate ever measured for a Mn(II) complex.

11.
Chemistry ; 18(12): 3675-86, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22328098

RESUMEN

The objective of this work was the synthesis of serum albumin targeted, Gd(III)-based magnetic resonance imaging (MRI) contrast agents exhibiting a strong pH-dependent relaxivity. Two new complexes (Gd-glu and Gd-bbu) were synthesized based on the DO3A macrocycle modified with three carboxyalkyl substituents α to the three ring nitrogen atoms, and a biphenylsulfonamide arm. The sulfonamide nitrogen coordinates the Gd in a pH-dependent fashion, resulting in a decrease in the hydration state, q, as pH is increased and a resultant decrease in relaxivity (r(1)). In the absence of human serum albumin (HSA), r(1) increases from 2.0 to 6.0 mM(-1) s(-1) for Gd-glu and from 2.4 to 9.0 mM(-1) s(-1) for Gd-bbu from pH 5 to 8.5 at 37 °C, 0.47 T, respectively. These complexes (0.2 mM) are bound (>98.9 %) to HSA (0.69 mM) over the pH range 5-8.5. Binding to albumin increases the rotational correlation time and results in higher relaxivity. The r(1) increased 120 % (pH 5) and 550 % (pH 8.5) for Gd-glu and 42 % (pH 5) and 260 % (pH 8.5) for Gd-bbu. The increases in r(1) at pH 5 were unexpectedly low for a putative slow tumbling q=2 complex. The Gd-bbu system was investigated further. At pH 5, it binds in a stepwise fashion to HSA with dissociation constants K(d1)=0.65, K(d2)=18, K(d3)=1360 µM. The relaxivity at each binding site was constant. Luminescence lifetime titration experiments with the Eu(III) analogue revealed that the inner-sphere water ligands are displaced when the complex binds to HSA resulting in lower than expected r(1) at pH 5. Variable pH and temperature nuclear magnetic relaxation dispersion (NMRD) studies showed that the increased r(1) of the albumin-bound q=0 complexes is due to the presence of a nearby water molecule with a long residency time (1-2 ns). The distance between this water molecule and the Gd ion changes with pH resulting in albumin-bound pH-dependent relaxivity.


Asunto(s)
Medios de Contraste/química , Medios de Contraste/síntesis química , Gadolinio/química , Albúmina Sérica/química , Albúmina Sérica/síntesis química , Medios de Contraste/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Cinética , Imagen por Resonancia Magnética , Estructura Molecular , Albúmina Sérica/metabolismo , Temperatura , Termodinámica
12.
Chemistry ; 18(5): 1419-31, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22213187

RESUMEN

A series of novel triazole derivative pyridine-based polyamino-polycarboxylate ligands has been synthesized for lanthanide complexation. This versatile platform of chelating agents combines advantageous properties for both magnetic resonance (MR) and optical imaging applications of the corresponding Gd(3+) and near-infrared luminescent lanthanide complexes. The thermodynamic stability constants of the Ln(3+) complexes, as assessed by pH potentiometric measurements, are in the range log K(LnL)=17-19, with a high selectivity for lanthanides over Ca(2+), Cu(2+), and Zn(2+). The complexes are bishydrated, an important advantage to obtain high relaxivities for the Gd(3+) chelates. The water exchange of the Gd(3+) complexes (k(ex)(298)=7.7-9.3×10(6) s(-1)) is faster than that of clinically used magnetic resonance imaging (MRI) contrast agents and proceeds through a dissociatively activated mechanism, as evidenced by the positive activation volumes (ΔV(≠)=7.2-8.8 cm(3) mol(-1)). The new triazole ligands allow a considerable shift towards lower excitation energies of the luminescent lanthanide complexes as compared to the parent pyridinic complex, which is a significant advantage in the perspective of biological applications. In addition, they provide increased epsilon values resulting in a larger number of emitted photons and better detection sensitivity. The most conjugated system PheTPy, bearing a phenyl-triazole pendant on the pyridine ring, is particularly promising as it displays the lowest excitation and triplet-state energies associated with good quantum yields for both Nd(3+) and Yb(3+) complexes. Cellular and in vivo toxicity studies in mice evidenced the non-toxicity and the safe use of such bishydrated complexes in animal experiments. Overall, these pyridinic ligands constitute a highly versatile platform for the simultaneous optimization of both MRI and optical properties of the Gd(3+) and the luminescent lanthanide complexes, respectively.


Asunto(s)
Elementos de la Serie de los Lantanoides/química , Compuestos Organometálicos/química , Piridinas/química , Amidinotransferasas , Animales , Células HeLa , Humanos , Ligandos , Hígado/enzimología , Luminiscencia , Imagen por Resonancia Magnética/métodos , Ratones , Modelos Químicos , Estructura Molecular , Espectroscopía Infrarroja Corta/métodos , Temperatura , Triazoles/química
13.
Chemphyschem ; 13(16): 3640-50, 2012 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-22927182

RESUMEN

Herein we present a theoretical investigation of the hyperfine coupling constants (HFCCs) on the inner-sphere water molecules of [Gd(H(2)O)(8)](3+) and different Gd(III)-based magnetic resonance imaging contrast agents such as [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)]. DFT calculations performed on the [Gd(H(2)O)(8)](3+) model system show that both hybrid-GGA functionals (BH&HLYP, B3PW91 and PBE1PBE) and the hybrid meta-GGA functional TPSSh provide (17)O HFCCs in close agreement with the experimental data. The use of all-electron relativistic approaches based on the DKH2 approximation and the use of relativistic effective core potentials (RECP) provide results of essentially the same quality. The accurate calculation of HFCCs on the [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)] complexes requires an adequate description of solvent effects. This was achieved by using a mixed cluster/continuum approach that includes explicitly two second-sphere water molecules. The calculated isotropic (17)O HFCCs (A(iso)) fall within the range 0.40-0.56 MHz, and show deviations from the corresponding experimental values typically lower than 0.05 MHz. The A(iso) values are significantly affected by the distance between the oxygen atom of the coordinated water molecule and the Gd(III) ion, as well as by the orientation of the water molecule plane with respect to the Gd-O vector. (1)H HFCCs of coordinated water molecules and (17)O HFCCs of second-sphere water molecules take values close to zero.


Asunto(s)
Medios de Contraste/química , Gadolinio DTPA/química , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Heterocíclicos/química , Compuestos Organometálicos/química , Agua/química , Imagen por Resonancia Magnética , Modelos Moleculares
14.
Inorg Chem ; 51(10): 5881-8, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22554122

RESUMEN

Homoleptic acetonitrile complexes [Gd(CH(3)CN)(9)][Al(OC(CF(3))(3))(4)](3) and [Eu(CH(3)CN)(9)][Al(OC(CF(3))(3))(4)](2) have been studied in anhydrous acetonitrile by (14)N- and (1)H NMR relaxation as well as by X- and Q-band EPR. For each compound a combined analysis of all experimental data allowed to get microscopic information on the dynamics in solution. The second order rotational correlation times for [Gd(CH(3)CN)(9)](3+) and [Eu(CH(3)CN)(9)](2+) are 14.5 ± 1.8 ps and 11.8 ± 1.1 ps, respectively. Solvent exchange rate constants determined are (55 ± 15) × 10(6) s(-1) for the trivalent Gd(3+) and (1530 ± 200) × 10(6) s(-1) for the divalent Eu(2+). Surprisingly, for both solvate complexes CH(3)CN exchange is much slower for the less strongly N-binding acetonitrile than for the more strongly coordinated O-binding H(2)O. It is concluded that this exceptional behavior is due to the extremely fast water exchange, whereas the exchange behavior of CH(3)CN is more regular. Electron spin relaxation on the isoelectronic ions is much slower than on the O-binding water analogues. This allowed a precise determination of the hyperfine coupling constants for each of the two stable isotopes of Gd(3+) and Eu(2+) having a nuclear spin.

15.
Inorg Chem ; 51(1): 170-8, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22128872

RESUMEN

The rotation of the carboxylate groups in DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate) complexes of several lanthanide ions and Sc(3+) was investigated with density functional theory (DFT) calculations and with variable temperature (17)O NMR studies at 4.7-18.8 T. The data obtained show that the rotation is much slower than the other dynamic processes taking place in these complexes. The exchange between the bound and unbound carboxylate oxygen atoms for the largest Ln(3+) ions (La(3+)→Sm(3+)) follows a pathway via a transition state in which both oxygens of the carboxylate group are bound to the Ln(3+) ion, whereas for the smaller metal ions (Tm(3+), Lu(3+), Sc(3+)) the transition state has a fully decoordinated carboxylate group. The activation free energies show a steady increase from about 75 to 125-135 kJ·mol(-1) going from La(3+) to Lu(3+). This computed trend is consistent with the results of the (17)O NMR measurements. Fast exchange between bound and unbound carboxylate oxygen atoms was observed for the diamagnetic La-DOTA, whereas for Pr-, Sm-, Lu-, and Sc-DOTA the exchange was slow on the NMR time scale. The trends in the linewidths for the various metal ions as a function of the temperature agree with trends in the rates as predicted by the DFT calculations.


Asunto(s)
Ácidos Carboxílicos/química , Complejos de Coordinación/química , Compuestos Heterocíclicos con 1 Anillo/química , Elementos de la Serie de los Lantanoides/química , Modelos Moleculares , Conformación Molecular , Teoría Cuántica , Termodinámica , Agua/química
16.
Inorg Chem ; 51(4): 2522-32, 2012 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-22233349

RESUMEN

In the objective of developing ligands that simultaneously satisfy the requirements for MRI contrast agents and near-infrared emitting optical probes that are suitable for imaging, three isoquinoline-based polyaminocarboxylate ligands, L1, L2 and L3, have been synthesized and the corresponding Gd(3+), Nd(3+) and Yb(3+) complexes investigated. The specific challenge of the present work was to create NIR emitting agents which (i) have excitation wavelengths compatible with biological applications and (ii) are able to emit a sufficient number of photons to ensure sensitive NIR detection for microscopic imaging. Here we report the first observation of a NIR signal arising from a Ln(3+) complex in aqueous solution in a microscopy setup. The lanthanide complexes have high thermodynamic stability (log K(LnL) =17.7-18.7) and good selectivity for lanthanide ions versus the endogenous cations Zn(2+), Cu(2+), and Ca(2+) thus preventing transmetalation. A variable temperature and pressure (17)O NMR study combined with nuclear magnetic relaxation dispersion measurements yielded the microscopic parameters characterizing water exchange and rotation. Bishydration of the lanthanide cation in the complexes, an important advantage to obtain high relaxivity for the Gd(3+) chelates, has been demonstrated by (17)O chemical shifts for the Gd(3+) complexes and by luminescence lifetime measurements for the Yb(3+) analogues. The water exchange on the three Gd(3+) complexes is considerably faster (k(ex)(298) = (13.9-15.4) × 10(6) s(-1)) than on commercial Gd(3+)-based contrast agents and proceeds via a dissociative mechanism, as evidenced by the large positive activation volumes for GdL1 and GdL2 (+10.3 ± 0.9 and +10.6 ± 0.9 cm(3) mol(-1), respectively). The relaxivity of GdL1 is doubled at 40 MHz and 298 K in fetal bovine serum (r(1) = 16.1 vs 8.5 mM(-1) s(-1) in HEPES buffer), due to hydrophobic interactions between the chelate and serum proteins. The isoquinoline core allows for the optimization of the optical properties of the luminescent lanthanide complexes in comparison to the pyridinic analogues and provides significant shifts of the excitation energies toward lower values which therefore become more adapted for biological applications. L2 and L3 bear two methoxy substituents on the aromatic core in ortho and para positions, respectively, that further modulate their electronic structure. The Nd(3+) and Yb(3+) complexes of the ligand L3, which incorporates the p-dimethoxyisoquinoline moiety, can be excited up to 420 nm. This wavelength is shifted over 100 nm toward lower energy in comparison to the pyridine-based analogue. The luminescence quantum yields of the Nd(3+) (0.013-0.016%) and Yb(3+) chelates (0.028-0.040%) are in the range of the best nonhydrated complexes, despite the presence of two inner sphere water molecules. More importantly, the 980 nm NIR emission band of YbL3 was detected with a good sensitivity in a proof of concept microscopy experiment at a concentration of 10 µM in fetal bovine serum. Our results demonstrate that even bishydrated NIR lanthanide complexes can emit a sufficient number of photons to ensure sensitive detection in practical applications. In particular, these ligands containing an aromatic core with coordinating pyridine nitrogen can be easily modified to tune the optical properties of the NIR luminescent lanthanide complexes while retaining good complex stability and MRI characteristics for the Gd(3+) analogues. They constitute a highly versatile platform for the development of bimodal MR and optical imaging probes based on a simple mixture of Gd(3+) and Yb(3+)/Nd(3+) complexes using an identical chelator. Given the presence of two inner sphere water molecules, important for MRI applications of the corresponding Gd(3+) analogues, this result is particularly exciting and opens wide perspectives not only for NIR imaging based on Ln(3+) ions but also for the design of combined NIR optical and MRI probes.


Asunto(s)
Medios de Contraste/química , Isoquinolinas/química , Elementos de la Serie de los Lantanoides/química , Sustancias Luminiscentes/química , Imagen por Resonancia Magnética , Medios de Contraste/síntesis química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Isoquinolinas/síntesis química , Elementos de la Serie de los Lantanoides/síntesis química , Luminiscencia , Sustancias Luminiscentes/síntesis química , Imagen por Resonancia Magnética/métodos , Espectroscopía Infrarroja Corta/métodos , Termodinámica
18.
Inorg Chem ; 50(20): 10402-16, 2011 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-21928781

RESUMEN

The syntheses, single crystal X-ray structures, and magnetic properties of the homometallic µ3-oxo trinuclear clusters [Fe3(µ3-O)(µ-O2CCH3)6(4-Phpy)3](ClO4) (1) and [Fe3(µ3-O)(µ-O2CAd)6(4-Mepy)3](NO3) (2) are reported (Ad = adamantane). The persistence of the trinuclear structure within 1 and 2 in CD2Cl2 and C2D2Cl4 solutions in the temperature range 190-390 K is demonstrated by ¹H NMR. An equilibrium between the mixed pyridine clusters [Fe3(µ3-O)(µ-O2CAd)6(4-Mepy)(3-x)(4-Phpy)(x)](NO3) (x = 0, 1, 2, 3) with a close to statistical distribution of these species is observed in CD2Cl2 solutions. Variable-temperature NMR line-broadening made it possible to quantify the coordinated/free 4-Rpy exchanges at the iron centers of 1 and 2: k(ex)²98 = 6.5 ± 1.3 × 10⁻¹ s⁻¹, ΔH(‡) = 89.47 ± 2 kJ mol⁻¹, and ΔS(‡) = +51.8 ± 6 J K⁻¹ mol⁻¹ for 1 and k(ex)²98 = 3.4 ± 0.5 × 10⁻¹ s⁻¹, ΔH(‡) = 91.13 ± 2 kJ mol⁻¹, and ΔS(‡) = +51.9 ± 5 J K⁻¹ mol⁻¹ for 2. A limiting D mechanism is assigned for these ligand exchange reactions on the basis of first-order rate laws and positive and large entropies of activation. The exchange rates are 4 orders of magnitude slower than those observed for the ligand exchange on the reduced heterovalent cluster [Fe(III)2Fe(II)(µ3-O)(µ-O2CCH3)6(4-Phpy)3] (3). In 3, the intramolecular Fe(III)/Fe(II) electron exchange is too fast to be observed. At low temperatures, the 1/3 intermolecular second-order electron self-exchange reaction is faster than the 4-Phpy ligand exchange reactions on these two clusters, suggesting an outer-sphere mechanism: k2²98 = 72.4 ± 1.0 × 103 M⁻¹ s⁻¹, ΔH(‡) = 18.18 ± 0.3 kJ mol⁻¹, and ΔS(‡) = -90.88 ± 1.0 J K⁻¹ mol⁻¹. The [Fe3(µ3-O)(µ-O2CCH3)6(4-Phpy)3](+/0) electron self-exchange reaction is compared with the more than 3 orders of magnitude faster [Ru3(µ3-O)(µ-O2CCH3)6(py)3](+/0) self-exchange reaction (ΔΔG(exptl)(‡298) = 18.2 kJ mol⁻¹). The theoretical estimated self-exchange rate constants for both processes compare reasonably well with the experimental values. The equilibrium constant for the formation of the precursor to the electron-transfer and the free energy of activation contribution for the solvent reorganization to reach the electron transfer step are taken to be the same for both redox couples. The larger ΔG(exptl)(‡298) for the 1/3 iron self-exchange is attributed to the larger (11.1 kJ mol⁻¹) inner-sphere reorganization energy of the 1 and 3 iron clusters in addition to a supplementary energy (6.1 kJ mol⁻¹) which arises as a result of the fact that each encounter is not electron-transfer spin-allowed for the iron redox couple.

19.
Inorg Chem ; 50(24): 12785-801, 2011 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-22092039

RESUMEN

Mn(2+) complexes represent an alternative to Gd(3+) chelates which are widely used contrast agents in magnetic resonance imaging. In this perspective, we investigated the Mn(2+) complexes of two 12-membered, pyridine-containing macrocyclic ligands bearing one pendant arm with a carboxylic acid (HL(1), 6-carboxymethyl-3,6,9,15-tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene) or a phosphonic acid function (H(2)L(2), 6-dihydroxyphosphorylmethyl-3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene). Both ligands were synthesized using nosyl or tosyl amino-protecting groups (starting from diethylenetriamine or tosylaziridine). The X-ray crystal structures confirmed a coordination number of 6 for Mn(2+) in their complexes. In aqueous solution, these pentadentate ligands allow one free coordination site for a water molecule. Potentiometric titration data indicated a higher basicity for H(2)L(2) than that for HL(1), related to the electron-donating effect of the negatively charged phosphonate group. According to the protonation sequence determined by (1)H and (31)P pH-NMR titrations, the first two protons are attached to macrocyclic amino groups whereas the subsequent protonation steps occur on the pendant arm. Both ligands form thermodynamically stable complexes with Mn(2+), with full complexation at physiological pH and 1:1 metal to ligand ratio. The kinetic inertness was studied via reaction with excess of Zn(2+) under various pHs. The dissociation of MnL(2) is instantaneous (at pH 6). For MnL(1), the dissociation is very fast (k(obs) = 1-12 × 10(3) s(-1)), much faster than that for MnDOTA, MnNOTA, or the Mn(2+) complex of the 15-membered analogue. It proceeds exclusively via the dissociation of the monoprotonated complex, without any influence of Zn(2+). In aqueous solution, both complexes are air-sensitive leading to Mn(3+) species, as evidenced by UV-vis and (1)H NMRD measurements and X-ray crystallography. Cyclic voltammetry gave low oxidation peak potentials (E(ox) = 0.73 V for MnL(1) and E(ox) = 0.68 V for MnL(2)), in accordance with air-oxidation. The parameters governing the relaxivity of the Mn(2+) complexes were determined from variable-temperature (17)O NMR and (1)H NMRD data. The water exchange is extremely fast, k(ex) = 3.03 and 1.77 × 10(9) s(-1) for MnL(1) and MnL(2), respectively. Variable-pressure (17)O NMR measurements have been performed to assess the water exchange mechanism on MnL(1) and MnL(2) as well as on other Mn(2+) complexes. The negative activation volumes for both MnL(1) and MnL(2) complexes confirmed an associative mechanism of the water exchange as expected for a hexacoordinated Mn(2+) ion. The hydration number of q = 1 was confirmed for both complexes by (17)O chemical shifts. A relaxometric titration with phosphate, carbonate or citrate excluded the replacement of the coordinated water molecule by these small endogenous anions.


Asunto(s)
Ácidos Carboxílicos/química , Medios de Contraste/síntesis química , Complejos de Coordinación/síntesis química , Compuestos Heterocíclicos con 2 Anillos/síntesis química , Manganeso/química , Organofosfonatos/química , Quelantes/síntesis química , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Cinética , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Potenciometría , Piridinas/química , Temperatura , Termodinámica
20.
Chimia (Aarau) ; 65(9): 696-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22026182

RESUMEN

Magnetic resonance imaging (MRI) is one of the most powerful diagnostic techniques used in clinics. The need for higher spatial resolution and better sensitivity led to the development of imagers working at high magnetic fields. The routine clinical use of 3 T MR systems raised the demand for MRI contrast agents working at this field or above. In the following we summarize the research in our research group on such high-field contrast agents.


Asunto(s)
Medios de Contraste/química , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Gadolinio/química , Campos Magnéticos , Microscopía Electrónica de Rastreo , Modelos Moleculares , Nanoestructuras , Compuestos Organomercuriales/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA