Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
HNO ; 71(8): 513-520, 2023 Aug.
Artículo en Alemán | MEDLINE | ID: mdl-37219567

RESUMEN

Bimodal provision of patients with asymmetric hearing loss with a hearing aid ipsilaterally and a cochlear implant (CI) contralaterally is probably the most complicated type of CI provision due to a variety of inherent variables. This review article presents all the systematic interaural mismatches between electric and acoustic stimulation that can occur in bimodal listeners. One of these mismatches is the interaural latency offset, i.e., the time difference of activation of the auditory nerve by acoustic and electric stimulation. Methods for quantifying this offset are presented by registering electrically and acoustically evoked potentials and measuring processing delays in the devices. Technical compensation of the interaural latency offset and its positive effect on sound localization ability in bimodal listeners is also described. Finally, most recent findings are discussed which may explain why compensation of the interaural latency offset does not improve speech understanding in noise in bimodal listeners.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Audífonos , Localización de Sonidos , Percepción del Habla , Humanos , Localización de Sonidos/fisiología , Estimulación Acústica/métodos
3.
Network ; 27(2-3): 212-236, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27644125

RESUMEN

This review evaluates the potential of optogenetic methods for the stimulation of the auditory nerve and assesses the feasability of optogenetic cochlear implants (CIs). It provides an overview of all critical steps like opsin targeting strategies, how opsins work, how their function can be modeled and included in neuronal models and the properties of light sources available for optical stimulation. From these foundations, quantitative estimates for the number of independent stimulation channels and the temporal precision of optogenetic stimulation of the auditory nerve are derived and compared with state-of-the-art electrical CIs. We conclude that optogenetic CIs have the potential to increase the number of independent stimulation channels by up to one order of magnitude to about 100, but only if light sources are able to deliver confined illumination patterns independently and parallelly. Already now, opsin variants like ChETA and Chronos enable driving of the auditory nerve up to rates of 200 spikes/s, close to the physiological value of their maximum sustained firing rate. Apart from requiring 10 times more energy than electrical stimulation, optical CIs still face major hurdles concerning the safety of gene transfection and optrode array implantation, for example, before becoming an option to replace electrical CIs.


Asunto(s)
Implantes Cocleares , Nervio Coclear , Optogenética , Cóclea , Implantación Coclear , Estimulación Eléctrica , Humanos , Modelos Teóricos
4.
Int J Audiol ; 55(5): 295-304, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26865377

RESUMEN

OBJECTIVE: The present study evaluated whether the poorer baseline performance of cochlear implant (CI) users or the technical and/or physiological properties of CI stimulation are responsible for the absence of masking release. DESIGN: This study measured speech reception thresholds (SRTs) in continuous and modulated noise as a function of signal to noise ratio (SNR). STUDY SAMPLE: A total of 24 subjects participated: 12 normal-hearing (NH) listeners and 12 subjects provided with recent MED-EL CI systems. RESULTS: The mean SRT of CI users in continuous noise was -3.0 ± 1.5 dB SNR (mean ± SEM), while the normal-hearing group reached -5.9 ± 0.8 dB SNR. In modulated noise, the difference across groups increased considerably. For CI users, the mean SRT worsened to -1.4 ± 2.3 dB SNR, while it improved for normal-hearing listeners to -18.9 ± 3.8 dB SNR. CONCLUSIONS: The detrimental effect of fluctuating maskers on SRTs in CI users shown by prior studies was confirmed by the current study. Concluding, the absence of masking release is mainly caused by the technical and/or physiological properties of CI stimulation, not just the poorer baseline performance of many CI users compared to normal-hearing subjects. Speech understanding in modulated noise was more robust in CI users who had a relatively large electrical dynamic range.


Asunto(s)
Implantes Cocleares/psicología , Sordera/fisiopatología , Ruido , Enmascaramiento Perceptual , Percepción del Habla , Estimulación Acústica/métodos , Adulto , Estudios de Casos y Controles , Corrección de Deficiencia Auditiva/instrumentación , Sordera/rehabilitación , Femenino , Humanos , Masculino , Relación Señal-Ruido , Prueba del Umbral de Recepción del Habla
5.
Cell Tissue Res ; 361(1): 159-75, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26048258

RESUMEN

Models are valuable tools to assess how deeply we understand complex systems: only if we are able to replicate the output of a system based on the function of its subcomponents can we assume that we have probably grasped its principles of operation. On the other hand, discrepancies between model results and measurements reveal gaps in our current knowledge, which can in turn be targeted by matched experiments. Models of the auditory periphery have improved greatly during the last decades, and account for many phenomena observed in experiments. While the cochlea is only partly accessible in experiments, models can extrapolate its behavior without gap from base to apex and with arbitrary input signals. With models we can for example evaluate speech coding with large speech databases, which is not possible experimentally, and models have been tuned to replicate features of the human hearing organ, for which practically no invasive electrophysiological measurements are available. Auditory models have become instrumental in evaluating models of neuronal sound processing in the auditory brainstem and even at higher levels, where they are used to provide realistic input, and finally, models can be used to illustrate how such a complicated system as the inner ear works by visualizing its responses. The big advantage there is that intermediate steps in various domains (mechanical, electrical, and chemical) are available, such that a consistent picture of the evolvement of its output can be drawn. However, it must be kept in mind that no model is able to replicate all physiological characteristics (yet) and therefore it is critical to choose the most appropriate model-or models-for every research question. To facilitate this task, this paper not only reviews three recent auditory models, it also introduces a framework that allows researchers to easily switch between models. It also provides uniform evaluation and visualization scripts, which allow for direct comparisons between models.


Asunto(s)
Cóclea/fisiología , Humanos
6.
Trends Hear ; 27: 23312165231171987, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37194477

RESUMEN

Subjects utilizing a cochlear implant (CI) in one ear and a hearing aid (HA) on the contralateral ear suffer from mismatches in stimulation timing due to different processing latencies of both devices. This device delay mismatch leads to a temporal mismatch in auditory nerve stimulation. Compensating for this auditory nerve stimulation mismatch by compensating for the device delay mismatch can significantly improve sound source localization accuracy. One CI manufacturer has already implemented the possibility of mismatch compensation in its current fitting software. This study investigated if this fitting parameter can be readily used in clinical settings and determined the effects of familiarization to a compensated device delay mismatch over a period of 3-4 weeks. Sound localization accuracy and speech understanding in noise were measured in eleven bimodal CI/HA users, with and without a compensation of the device delay mismatch. The results showed that sound localization bias improved to 0°, implying that the localization bias towards the CI was eliminated when the device delay mismatch was compensated. The RMS error was improved by 18% with this improvement not reaching statistical significance. The effects were acute and did not further improve after 3 weeks of familiarization. For the speech tests, spatial release from masking did not improve with a compensated mismatch. The results show that this fitting parameter can be readily used by clinicians to improve sound localization ability in bimodal users. Further, our findings suggest that subjects with poor sound localization ability benefit the most from the device delay mismatch compensation.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Audífonos , Localización de Sonidos , Percepción del Habla , Humanos , Estudios de Factibilidad , Percepción del Habla/fisiología , Implantación Coclear/métodos , Localización de Sonidos/fisiología
7.
Front Neurosci ; 17: 1257720, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38264492

RESUMEN

Introduction: Subjects with mild to moderate hearing loss today often receive hearing aids (HA) with open-fitting (OF). In OF, direct sound reaches the eardrums with minimal damping. Due to the required processing delay in digital HA, the amplified HA sound follows some milliseconds later. This process occurs in both ears symmetrically in bilateral HA provision and is likely to have no or minor detrimental effect on binaural hearing. However, the delayed and amplified sound are only present in one ear in cases of unilateral hearing loss provided with one HA. This processing alters interaural timing differences in the resulting ear signals. Methods: In the present study, an experiment with normal-hearing subjects to investigate speech intelligibility in noise with direct and delayed sound was performed to mimic unilateral and bilateral HA provision with OF. Results: The outcomes reveal that these delays affect speech reception thresholds (SRT) in the unilateral OF simulation when presenting speech and noise from different spatial directions. A significant decrease in the median SRT from -18.1 to -14.7 dB SNR is observed when typical HA processing delays are applied. On the other hand, SRT was independent of the delay between direct and delayed sound in the bilateral OF simulation. Discussion: The significant effect emphasizes the development of rapid processing algorithms for unilateral HA provision.

8.
Trends Hear ; 27: 23312165231207229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936420

RESUMEN

Long stimuli have lower detection thresholds or are perceived louder than short stimuli with the same intensity, an effect known as temporal loudness integration (TLI). In electric hearing, TLI for pulse trains with a fixed rate but varying number of pulses, i.e. stimulus duration, has mainly been investigated at clinically used stimulation rates. To study the effect of an overall effective stimulation rate at 100% channel crosstalk, we investigated TLI with (a) a clinically used single-channel stimulation rate of 1,500 pps and (b) a high stimulation rate of 18,000 pps, both for an apical and a basal electrode. Thresholds (THR), a line of equal loudness (BAL), and maximum acceptable levels (MALs) were measured in 10 MED-EL cochlear implant users. Stimulus durations varied from a single pulse to 300 ms long pulse trains. At 18,000 pps, the dynamic range (DR) increased by 7.36±3.16 dB for the 300 ms pulse train. Amplitudes at THR, BAL, and MAL decreased monotonically with increasing stimulus duration. The decline was fitted with high accuracy with a power law function (R2=0.94±0.06). Threshold slopes were -1.05±0.36 and -1.66±0.30 dB per doubling of duration for the low and high rate, respectively, and were shallower than for acoustic hearing. The electrode location did not affect the amplitudes or slopes of the TLI curves. THR, BAL, and MAL were always lower for the higher rate and the DR was larger at the higher rate at all measured durations.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Sordera , Humanos , Percepción Sonora/fisiología , Audición , Estimulación Eléctrica , Estimulación Acústica
9.
Trends Hear ; 26: 23312165221094202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35473484

RESUMEN

In asymmetric treatment of hearing loss, processing latencies of the modalities typically differ. This often alters the reference interaural time difference (ITD) (i.e., the ITD at 0° azimuth) by several milliseconds. Such changes in reference ITD have shown to influence sound source localization in bimodal listeners provided with a hearing aid (HA) in one and a cochlear implant (CI) in the contralateral ear. In this study, the effect of changes in reference ITD on speech understanding, especially spatial release from masking (SRM) in normal-hearing subjects was explored. Speech reception thresholds (SRT) were measured in ten normal-hearing subjects for reference ITDs of 0, 1.75, 3.5, 5.25 and 7 ms with spatially collocated (S0N0) and spatially separated (S0N90) sound sources. Further, the cues for separation of target and masker were manipulated to measure the effect of a reference ITD on unmasking by A) ITDs and interaural level differences (ILDs), B) ITDs only and C) ILDs only. A blind equalization-cancellation (EC) model was applied to simulate all measured conditions. SRM decreased significantly in conditions A) and B) when the reference ITD was increased: In condition A) from 8.8 dB SNR on average at 0 ms reference ITD to 4.6 dB at 7 ms, in condition B) from 5.5 dB to 1.1 dB. In condition C) no significant effect was found. These results were accurately predicted by the applied EC-model. The outcomes show that interaural processing latency differences should be considered in asymmetric treatment of hearing loss.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Sordera , Percepción del Habla , Señales (Psicología) , Humanos
10.
Artículo en Inglés | MEDLINE | ID: mdl-35857725

RESUMEN

Magnetic stimulation of peripheral nerves is evoked by electric field gradients caused by high-intensity, pulsed magnetic fields created from a coil. Currents required for stimulation are very high, therefore devices are large, expensive, and often too complex for many applications like rehabilitation therapy. For repetitive stimulation, coil heating due to power loss poses a further limitation. The geometry of the magnetic coil determines field depth and focality, making it the most important factor that determines the current required for neuronal excitation. However, the comparison between different coil geometries is difficult and depends on the specific application. Especially the distance between nerve and coil plays a crucial role. In this investigation, the electric field distribution of 14 different coil geometries was calculated for a typical peripheral nerve stimulation with a 27 mm distance between axon and coil. Coil parameters like field strength and focality were determined with electromagnetic field simulations. In a second analysis, the activating function along the axon was calculated, which quantifies the efficiency of neuronal stimulation. Moreover, coil designs were evaluated concerning power efficacy based on ohmic losses. Our results indicate that power efficacy of magnetic neurostimulation can be improved significantly by up to 40% with optimized coil designs.


Asunto(s)
Campos Electromagnéticos , Estimulación Eléctrica Transcutánea del Nervio , Estimulación Eléctrica , Humanos , Neuronas , Nervios Periféricos , Estimulación Magnética Transcraneal/métodos
11.
Front Neurosci ; 16: 914876, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873813

RESUMEN

After hearing loss retrograde degeneration of spiral ganglion neurons (SGNs) has been described. Studies modeling the effects of degeneration mostly omitted peripheral processes (dendrites). Recent experimental observations indicated that degenerating SGNs manifested also a reduced diameter of their dendrites. We simulated populations of 400 SGNs inside a high resolution cochlear model with a cochlear implant, based on µCT scans of a human temporal bone. Cochlear implant stimuli were delivered as biphasic pulses in a monopolar configuration. Three SGN situations were simulated, based on our previous measurements of human SGN dendrites: (A) SGNs with intact dendrites (before degeneration), (B) degenerating SGNs, dendrites with a smaller diameter but original length, (C) degenerating SGNs, dendrites omitted. SGN fibers were mapped to characteristic frequency, and place pitch was estimated from excitation profiles. Results from degenerating SGNs (B, C) were similar. Most action potentials were initiated in the somatic area for all cases (A, B, C), except for areas near stimulating electrodes in the apex with intact SGNs (A), where action potentials were initiated in the distal dendrite. In most cases, degenerating SGNs had lower thresholds than intact SGNs (A) (down to -2 dB). Excitation profiles showed increased ectopic activation, i.e., activation of unintended neuronal regions, as well as similar neuronal regions excited by different apical electrodes, for degenerating SGNs (B, C). The estimated pitch showed cases of pitch reversals in apical electrodes for intact SGNs (A), as well as mostly identical pitches evoked by the four most apical electrodes for degenerating SGNs (B, C). In conclusion, neuronal excitation profiles to electrical stimulation exhibited similar traits in both ways of modeling SGN degeneration. Models showed degeneration of dendrites caused increased ectopic activation, as well as similar excitation profiles and pitch evoked by different apical electrodes. Therefore, insertion of electrodes beyond approximately 450° may not provide any benefit if SGN dendrites are degenerated.

12.
Front Hum Neurosci ; 16: 809293, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721351

RESUMEN

Virtual reality environments offer great opportunities to study the performance of brain-computer interfaces (BCIs) in real-world contexts. As real-world stimuli are typically multimodal, their neuronal integration elicits complex response patterns. To investigate the effect of additional auditory cues on the processing of visual information, we used virtual reality to mimic safety-related events in an industrial environment while we concomitantly recorded electroencephalography (EEG) signals. We simulated a box traveling on a conveyor belt system where two types of stimuli - an exploding and a burning box - interrupt regular operation. The recordings from 16 subjects were divided into two subsets, a visual-only and an audio-visual experiment. In the visual-only experiment, the response patterns for both stimuli elicited a similar pattern - a visual evoked potential (VEP) followed by an event-related potential (ERP) over the occipital-parietal lobe. Moreover, we found the perceived severity of the event to be reflected in the signal amplitude. Interestingly, the additional auditory cues had a twofold effect on the previous findings: The P1 component was significantly suppressed in the case of the exploding box stimulus, whereas the N2c showed an enhancement for the burning box stimulus. This result highlights the impact of multisensory integration on the performance of realistic BCI applications. Indeed, we observed alterations in the offline classification accuracy for a detection task based on a mixed feature extraction (variance, power spectral density, and discrete wavelet transform) and a support vector machine classifier. In the case of the explosion, the accuracy slightly decreased by -1.64% p. in an audio-visual experiment compared to the visual-only. Contrarily, the classification accuracy for the burning box increased by 5.58% p. when additional auditory cues were present. Hence, we conclude, that especially in challenging detection tasks, it is favorable to consider the potential of multisensory integration when BCIs are supposed to operate under (multimodal) real-world conditions.

13.
J Comput Neurosci ; 30(3): 529-42, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20862531

RESUMEN

In this paper we use information theory to quantify the information in the output spike trains of modeled cochlear nucleus globular bushy cells (GBCs). GBCs are part of the sound localization pathway. They are known for their precise temporal processing, and they code amplitude modulations with high fidelity. Here we investigated the information transmission for a natural sound, a recorded vowel. We conclude that the maximum information transmission rate for a single neuron was close to 1,050 bits/s, which corresponds to a value of approximately 5.8 bits per spike. For quasi-periodic signals like voiced speech, the transmitted information saturated as word duration increased. In general, approximately 80% of the available information from the spike trains was transmitted within about 20 ms. Transmitted information for speech signals concentrated around formant frequency regions. The efficiency of neural coding was above 60% up to the highest temporal resolution we investigated (20 µs). The increase in transmitted information to that precision indicates that these neurons are able to code information with extremely high fidelity, which is required for sound localization. On the other hand, only 20% of the information was captured when the temporal resolution was reduced to 4 ms. As the temporal resolution of most speech recognition systems is limited to less than 10 ms, this massive information loss might be one of the reasons which are responsible for the lack of noise robustness of these systems.


Asunto(s)
Potenciales de Acción/fisiología , Núcleo Coclear/fisiología , Modelos Neurológicos , Neuronas/fisiología , Percepción del Habla/fisiología , Percepción Auditiva/fisiología , Núcleo Coclear/citología , Femenino , Humanos , Redes Neurales de la Computación , Neuronas/citología
14.
Trends Hear ; 25: 23312165211016165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34057366

RESUMEN

Users of a cochlear implant (CI) in one ear, who are provided with a hearing aid (HA) in the contralateral ear, so-called bimodal listeners, are typically affected by a constant and relatively large interaural time delay offset due to differences in signal processing and differences in stimulation. For HA stimulation, the cochlear travelling wave delay is added to the processing delay, while for CI stimulation, the auditory nerve fibers are stimulated directly. In case of MED-EL CI systems in combination with different HA types, the CI stimulation precedes the acoustic HA stimulation by 3 to 10 ms. A self-designed, battery-powered, portable, and programmable delay line was applied to the CI to reduce the device delay mismatch in nine bimodal listeners. We used an A-B-B-A test design and determined if sound source localization improves when the device delay mismatch is reduced by delaying the CI stimulation by the HA processing delay (τHA). Results revealed that every subject in our group of nine bimodal listeners benefited from the approach. The root-mean-square error of sound localization improved significantly from 52.6° to 37.9°. The signed bias also improved significantly from 25.2° to 10.5°, with positive values indicating a bias toward the CI. Furthermore, two other delay values (τHA -1 ms and τHA +1 ms) were applied, and with the latter value, the signed bias was further reduced in some test subjects. We conclude that sound source localization accuracy in bimodal listeners improves instantaneously and sustainably when the device delay mismatch is reduced.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Audífonos , Localización de Sonidos , Percepción del Habla , Humanos
15.
Front Neurosci ; 15: 705189, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393715

RESUMEN

We estimated the electrically-evoked auditory brainstem response thresholds (eABR THRs) in response to multi-pulses with high burst rate of 10,000 pulses-per-second (pps). Growth functions of wave eV amplitudes, root mean square (RMS) values, peak of phase-locking value (PLV), and the lowest valid data point (LVDP) were calculated in 1-, 2-, 4-, 8-, and 16-pulses conditions. The growth functions were then fitted and extrapolated with linear and exponential functions to find eABR THRs. The estimated THRs were compared to psychophysical THRs determined for multi-pulse conditions as well as to the clinical THRs measured behaviorally at the rate of 1,000 pps. The growth functions of features showed shallower growth slopes when the number of pulses increased. eABR THRs estimated in 4-, 8-, and 16-pulses conditions were closer to the clinical THRs, when compared to 1- and 2-pulses conditions. However, the smallest difference between estimated eABR THRs and clinical THRs was not always achieved from the same number of pulses. The smallest absolute difference of 30.3 µA was found for the linear fittings on growth functions of eABR RMS values in 4-pulses condition. Pearson's correlation coefficients (PCCs) between eABR THRs and psychophysical THRs were significant and relatively large in all but 16-pulses conditions. The PCCs between eABR THRs and clinical THRs, however, were smaller and in less cases significant. Results of this study showed that eABRs to multi-pulse stimulation could, to some extent, represent clinical stimulation paradigms, and thus in comparison to single pulses, could estimate clinical THRs with smaller errors.

16.
IEEE J Biomed Health Inform ; 25(4): 1233-1246, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32750978

RESUMEN

In the past three decades, snoring (affecting more than 30 % adults of the UK population) has been increasingly studied in the transdisciplinary research community involving medicine and engineering. Early work demonstrated that, the snore sound can carry important information about the status of the upper airway, which facilitates the development of non-invasive acoustic based approaches for diagnosing and screening of obstructive sleep apnoea and other sleep disorders. Nonetheless, there are more demands from clinical practice on finding methods to localise the snore sound's excitation rather than only detecting sleep disorders. In order to further the relevant studies and attract more attention, we provide a comprehensive review on the state-of-the-art techniques from machine learning to automatically classify snore sounds. First, we introduce the background and definition of the problem. Second, we illustrate the current work in detail and explain potential applications. Finally, we discuss the limitations and challenges in the snore sound classification task. Overall, our review provides a comprehensive guidance for researchers to contribute to this area.


Asunto(s)
Apnea Obstructiva del Sueño , Ronquido , Acústica , Adulto , Humanos , Aprendizaje Automático , Apnea Obstructiva del Sueño/diagnóstico , Ronquido/diagnóstico , Sonido
17.
Front Neurosci ; 14: 615, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32694972

RESUMEN

We investigated the effects of electric multi-pulse stimulation on electrically evoked auditory brainstem responses (eABRs). Multi-pulses with a high burst rate of 10,000 pps were assembled from pulses of 45-µs phase duration. Conditions of 1, 2, 4, 8, and 16 pulses were investigated. Psychophysical thresholds (THRs) and most comfortable levels (MCLs) in multi-pulse conditions were measured. Psychophysical temporal integration functions (slopes of THRs/MCLs as a function of number of pulses) were -1.30 and -0.93 dB/doubling of the number of pulses, which correspond to the doubling of pulse duration. A total of 15 eABR conditions with different numbers of pulses and amplitudes were measured. The morphology of eABRs to multi-pulse stimuli did not differ from those to conventional single pulses. eABR wave eV amplitudes and latencies were analyzed extensively. At a fixed stimulation amplitude, an increasing number of pulses caused increasing wave eV amplitudes up to a certain, subject-dependent number of pulses. Then, amplitudes either saturated or even decreased. This contradicted the conventional amplitude growth functions and also contradicted psychophysical results. We showed that destructive interference could be a possible reason for such a finding, where peaks and troughs of responses to the first pulses were suppressed by those of successive pulses in the train. This study provides data on psychophysical THRs and MCLs and corresponding eABR responses for stimulation with single-pulse and multi-pulse stimuli with increasing duration. Therefore, it provides insights how pulse trains integrate at the level of the brainstem.

18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2324-2327, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018473

RESUMEN

Existing computational studies of cochlear implants have demonstrated that the structural detail of threedimensional (3D) cochlear models exerts influence on the current spread within the cochlea. Nevertheless, the significance of including the microstructures inside the modiolar bone in a cochlear model is still unclear in the literature. We employed two different multi-compartment neuron models to simulate auditory nerve fibres, and compared response characteristics of the fibre population between a detailed and a simplified 3D cochlear model. Results showed that although the prediction of firing is dependent on the details of the neuron model, the responses of the fibre population to the electrical stimulus, especially the location of the initiation of action potential, varied between the detailed and the simplified models. Therefore, the inclusion of the modiolar microstructures in a cochlear model may be necessary for fully understanding the firing of auditory nerve fibres.


Asunto(s)
Implantes Cocleares , Nervio Coclear , Cóclea , Estimulación Eléctrica , Fibras Nerviosas
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 3653-3657, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31946668

RESUMEN

Objective- The distinction of snoring and loud breathing is often subjective and lies in the ear of the beholder. The aim of this study is to identify and assess acoustic features with a high suitability to distinguish these two classes of sound, in order to facilitate an objective definition of snoring based on acoustic parameters. Methods- A corpus of snore and breath sounds from 23 subjects has been used that were classified by 25 human raters. Using the openSMILE feature extractor, 6 373 acoustic features have been evaluated for their selectivity comparing SVM classification, logistic regression, and the recall of each single feature. Results- Most selective single features were several statistical functionals of the first and second mel frequency spectrum-generated perceptual linear predictive (PLP) cepstral coefficient with an unweighted average recall (UAR) of up to 93.8%. The best performing feature sets were low level descriptors (LLDs), derivatives and statistical functionals based on fast Fourier transformation (FFT), with a UAR of 93.0%, and on the summed mel frequency spectrum-generated PLP cepstral coefficients, with a UAR of 92.2% using SVM classification. Compared to SVM classification, logistic regression did not show considerable differences in classification performance. Conclusion- It could be shown that snoring and loud breathing can be distinguished by robust acoustic features. The findings might serve as a guidance to find a consensus for an objective definition of snoring compared to loud breathing.


Asunto(s)
Acústica , Ronquido/diagnóstico , Sonido , Máquina de Vectores de Soporte , Humanos
20.
Front Neurosci ; 13: 1173, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31749676

RESUMEN

Background: Multi-compartment cable models of auditory nerve fibers have been developed to assist in the improvement of cochlear implants. With the advancement of computational technology and the results obtained from in vivo and in vitro experiments, these models have evolved to incorporate a considerable degree of morphological and physiological details. They have also been combined with three-dimensional volume conduction models of the cochlea to simulate neural responses to electrical stimulation. However, no specific rules have been provided on choosing the appropriate cable model, and most models adopted in recent studies were chosen without a specific reason or by inheritance. Methods: Three of the most cited biophysical multi-compartment cable models of the human auditory nerve, i.e., Rattay et al. (2001b), Briaire and Frijns (2005), and Smit et al. (2010), were implemented in this study. Several properties of single fibers were compared among the three models, including threshold, conduction velocity, action potential shape, latency, refractory properties, as well as stochastic and temporal behaviors. Experimental results regarding these properties were also included as a reference for comparison. Results: For monophasic single-pulse stimulation, the ratio of anodic vs. cathodic thresholds in all models was within the experimental range despite a much larger ratio in the model by Briaire and Frijns. For biphasic pulse-train stimulation, thresholds as a function of both pulse rate and pulse duration differed between the models, but none matched the experimental observations even coarsely. Similarly, for all other properties including the conduction velocity, action potential shape, and latency, the models presented different outcomes and not all of them fell within the range observed in experiments. Conclusions: While all three models presented similar values in certain single fiber properties to those obtained in experiments, none matched all experimental observations satisfactorily. In particular, the adaptation and temporal integration behaviors were completely missing in all models. Further extensions and analyses are required to explain and simulate realistic auditory nerve fiber responses to electrical stimulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA