Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Phys Chem Chem Phys ; 25(8): 6436-6453, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36779955

RESUMEN

Ionic liquids are attractive liquid materials for many advanced applications. For targeted design, in-depth knowledge about their structure-property-relations is urgently needed. We prepared a set of novel protic ionic liquids (PILs) with a guanidinium cation with either an ether or alkyl side chain and different anions. While being a promising cation class, the available data is insufficient to guide design. We measured thermal and transport properties, nuclear magnetic resonance (NMR) spectra as well as liquid and crystalline structures supported by ab initio computations and were able to obtain a detailed insight into the influence of the anion and the ether substitution on the physical and spectroscopic properties. For the PILs, hydrogen bonding is the main interaction between cation and anion and the H-bond strength is inversely related to the proton affinity of the constituting acid and correlated to the increase of 1H and 15N chemical shifts. Using anions from acids with lower proton affinity leads to proton localization on the cation as evident from NMR spectra and self-diffusion coefficients. In contrast, proton exchange was evident in ionic liquids with triflate and trifluoroacetate anions. Using imide-type anions and ether side groups decreases glass transitions as well as fragility, and accelerated dynamics significantly. In case of the ether guanidinium ionic liquids, the conformation of the side chain adopts a curled structure as the result of dispersion interactions, while the alkyl chains prefer a linear arrangement.

2.
Chemistry ; 28(23): e202200257, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35187737

RESUMEN

We report the complex phase behavior of the glass forming protic ionic liquid (PIL) d3-octylphosphonium bis(trifluoromethylsulfonyl)imide [C8 H17 PD3 ][NTf2 ] by means of solid-state NMR spectroscopy. Combined line shape and spin relaxation studies of the deuterons in the PD3 group of the octylphosphonium cation allow to map and correlate the phase behavior for a broad temperature range from 71 K to 343 K. In the solid PIL at 71 K, we observed a static state, characterized by the first deuteron quadrupole coupling constant reported for PD3 deuterons. A transition enthalpy of about 12 kJ mol-1 from the static to the mobile state with increasing temperature suggests the breaking of a weak, charge-enhanced hydrogen bond between cation and anion. The highly mobile phase above 100 K exhibits an almost disappearing activation barrier, strongly indicating quantum tunneling. Thus, we provide first evidence of tunneling driven mobility of the hydrogen bonded P-D moieties in the glassy state of PILs, already at surprisingly high temperatures up to 200 K. Above 250 K, the mobile phase turns from anisotropic to isotropic motion, and indicates strong internal rotation of the PD3 group. The analyzed line shapes and spin relaxation times allow us to link the structural and dynamical behavior at molecular level with the phase behavior beyond the DSC traces.

3.
Molecules ; 27(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35897904

RESUMEN

In this study, we address the fundamental question of the physicochemical and electrochemical properties of phosphonium-based ionic liquids containing the counter-ions bis(trifluoromethanesulfonyl)imide ([TFSI]-) and bis(fluorosulfonyl)imide ([FSI]-). To clarify these structure-property as well as structure-activity relationships, trimethyl-based alkyl- and ether-containing phosphonium ILs were systematically synthesized, and their properties, namely density, flow characteristics, alkali metal compatibility, oxidative stability, aluminum corrosivity as well as their use in Li-ion cells were examined comprehensively. The variable moiety on the phosphonium cation exhibited a chain length of four and five, respectively. The properties were discussed as a function of the side chain, counter-ion and salt addition ([Li][TFSI] or [Li][FSI]). High stability coupled with good flow characteristics were found for the phosphonium IL [P1114][TFSI] and the mixture [P1114][TFSI] + [Li][TFSI], respectively.

4.
Phys Chem Chem Phys ; 23(37): 21042-21064, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34522943

RESUMEN

Ionic liquids are modern liquid materials with potential and actual implementation in many advanced technologies. They combine many favourable and modifiable properties but have a major inherent drawback compared to molecular liquids - slower dynamics. In previous studies we found that the dynamics of ionic liquids are significantly accelerated by the introduction of multiple ether side chains into the cations. However, the origin of the improved transport properties, whether as a result of the altered cation conformation or due to the absence of nanostructuring within the liquid as a result of the higher polarity of the ether chains, remained to be clarified. Therefore, we prepared two novel sets of methylammonium based ionic liquids; one set with three ether substituents and another set with three butyl side chains, in order to compare their dynamic properties and liquid structures. Using a range of anions, we show that the dynamics of the ether-substituted cations are systematically and distinctly accelerated. Liquefaction temperatures are lowered and fragilities increased, while at the same time cation-anion distances are slightly larger for the alkylated samples. Furthermore, pronounced liquid nanostructures were not observed. Molecular dynamics simulations demonstrate that the origin of the altered properties of the ether substituted ionic liquids is primarily due to a curled ether chain conformation, in contrast to the alkylated cations where the alkyl chains retain a linear conformation. Thus, the observed structure-property relations can be explained by changes in the geometric shape of the cations, rather than by the absence of a liquid nanostructure. Application of quantum chemical calculations to a simplified model system revealed that intramolecular hydrogen-bonding is responsible for approximately half of the stabilisation of the curled ether-cations, whereas the other half stems from non-specific long-range interactions. These findings give more detailed insights into the structure-property relations of ionic liquids and will guide the development of ionic liquids that do not suffer from slow dynamics.

5.
Phys Chem Chem Phys ; 22(40): 23038-23056, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33047758

RESUMEN

Ionic liquids are an attractive material class due to their wide liquid range, intrinsic ionic conductivity, and high chemical as well as electrochemical stability. However, the widespread use of ionic liquids is hindered by significantly higher viscosities compared to conventional molecular solvents. In this work, we show how the transport properties of ionic liquids can be altered significantly, even for isostructural ions that have the same backbone. To this end, structure-property relationships have been determined for a set of 16 systematically varied representative ionic liquids. Variations in molecular structure include ammonium vs. phosphonium, ether vs. alkyl side chains, and rigid vs. flexible anions. Ab initio calculations are used to relate molecular structures to the thermal, structural and transport properties of the ionic liquids. We find that the differences in properties of ether and alkyl functionalised ionic liquids are primarily dependent on minimum energy geometries, with the conformational flexibility of ether side chains appearing to be of secondary importance. We also show unprecedented correlations between anion conformational flexibility and transport properties. Critically, increasing fluidity upon consecutive introduction of ether side chains and phosphonium centres into the cation is found to be dependent on whether the anion is flexible or rigid. We demonstrate that targeted design of functional groups based on structure-property relationships can yield ionic liquids of exceptionally high fluidity.

6.
Chemphyschem ; 20(3): 443-455, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30480374

RESUMEN

Ionic liquids (ILs) are promising electrolytes, although their often high viscosity remains a serious drawback. The latter can be addressed by the introduction of multiple ether functionalization. Based on the highly atom efficient synthesis of tris(2-ethoxyethyl) phosphine, several new phosphonium ionic liquids were prepared, which allows studying the influence of the ether side chains. Their most important physicochemical properties have been determined and will be interpreted using established approaches like ionicity, hole theory, and the Walden plot. There is striking evidence that the properties of phosphonium ionic liquids with the methanesulfonate anion are dominated by aggregation, whereas the two triple ether functionalized ILs with the highest fluidity show almost ideal behavior with other factors being dominant. It is furthermore found that the deviation from ideality is not significantly changed upon introduction of the ether side chains, although a very beneficial impact on the fluidity of ILs is observed. Multiple ether functionalization therefore proves as a powerful tool to overcome the disadvantages of phosphonium ionic liquids with large cations.

7.
J Phys Chem A ; 123(19): 4188-4200, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-30991004

RESUMEN

As a result of continuing ionic liquid research, it becomes clearer that charge transfer in ionic liquids has a physical reality. In a recent publication, we demonstrated the utility of simple density functional theory descriptors to estimate charge transfer for a large number of ion combinations, which is possible because the ions are treated separately. A major disadvantage found was that the charge transfer was systematically overestimated. In this work, we introduce a correction to account for the losses in Coulomb attraction when charge is transferred from the anion to the cation. We find that accounting for these losses is important to describe charge transfer in ionic liquids appropriately. The advantage that the calculations can be performed separately on the individual, isolated ions is maintained. The corrected as well as the uncorrected charge transfer have been calculated for over 4000 cation-anion combinations at the R(O)B3LYP/6-311+G(2d,p)//RB3LYP/6-31+G(d,p) level of theory. With the correction, the absolute values for the charge transfer are no longer unrealistically high and agree well with other charge transfer estimates from the literature. In general, the cumulative nature of the Haven ratio is now correctly mirrored in the relationship between the corrected theoretical charge transfer and the experimental estimate from the Nernst-Einstein relation. Earlier findings on the similarities between ether-functionalized and nonfunctionalized ionic liquids are confirmed. However, we also observe inconsistencies when using the experimental charge transfer estimates together with the ionicity interpretation of the Haven ratio. These can be interpreted as a hint toward the latter premise being wrong.

8.
J Phys Chem A ; 123(4): 851-861, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30609365

RESUMEN

One of the few properties common to all ionic liquids is their inherent electrical conductivity, which makes them promising candidates for advanced electrochemical applications. A central finding in this respect is that the measured conductivity is almost always lower than the one obtained from the Nernst-Einstein relation. There has been much dispute about whether correlated motion, charge transfer, or some sort of aggregation is the reason for this difference. In this work, we apply density functional theory-based descriptors to estimate the charge transfer in ionic liquids, which allow predictions for a large number of systems with minimal effort. The theoretical charge transfer was obtained from vertical ionization potentials and electron affinities at the RB3LYP/6-311+G(2d,p)//RB3LYP/6-31+G(d,p) level of theory. To be able to compare and classify the values obtained with this approach, another measure for charge transfer, available directly from the Nernst-Einstein relation, is introduced. The two quantities show significant correlation for some subsets of ionic liquids for which a sufficient amount of information is available. Additionally, the purely theoretical charge-transfer values allow for identifying interesting systems that should be the subject of further investigation.

9.
Langmuir ; 34(35): 10217-10229, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30085682

RESUMEN

Siloxane coatings for surfaces are essential in many scientific and industrial applications. We describe a straightforward gas-phase evaporation technique in inert atmosphere and introduce a practical and reliable silanization protocol adaptable to different silane types. The primary aim of depositing ultrathin siloxane films on surfaces is to enable a reproducible and homogenous surface functionalization without agglomeration effects during the layer formation. To realize high-quality and large-area coatings, it is fundamental to understand the reaction conditions of the silanes, the process of the siloxane layer formation, and the possible influence of the substrate morphology. We used three typical silane types to exemplify the potential and versatility of our process: aminopropyltriethoxysilane, glycidoxypropyltrimethoxysilane, and 1 H,1 H,2 H,2 H-perfluorooctyl-trichlorosilane. The ultrathin siloxane layers, which are generally difficult to characterize, were precisely investigated with high-resolution surface-characterization methods to verify our concept in terms of reproducibility and coating quality. Our results show that this gas-phase evaporation protocol is easily adaptable to all three, widely used silane types also enabling a large-area upscale.

10.
Phys Chem Chem Phys ; 19(40): 27251-27258, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28991304

RESUMEN

Ionic liquids (ILs) exhibit tunable behaviour and properties that are due to their supramolecular structure. We synthesized a series of alkylated and fluorinated phosphonium dicyanamide ILs to study the relation between molecular structure and assembly with a focus on the roles of cation chain length and fluorination. Small angle X-ray scattering indicated a lamellar structure with long-range order for all fluorinated ILs, while alkylated ILs showed only the general structures of ILs, i.e., alternating a polar ionic-zone and a nonpolar alkyl-zone. "Fluorophobic" interactions caused microphase segregation between perfluorinated and other molecular segments, "fluorophilic" interactions among the perfluorinated segments stabilized the microphase structure, and the coupling of "fluorophobic" and "fluorophilic" interactions resulted in a stable mesophase structure. The perfluorinated segments packed more densely than the alkylated analogues; the fluorinated versions (except for F2) liquefied at temperatures considerably above that of alkylated ILs. The lamellar structures strongly affected the rheology of the ILs. Fluorinated ILs had higher viscosities and exhibited non-Newtonian shear thinning; the alkylated ILs of the same length had an order of magnitude lower viscosities and were purely Newtonian. We propose that the disruption of lamellar structure in the shear flow causes the non-Newtonian flow behaviour.

11.
Anal Chem ; 88(2): 1328-35, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26651235

RESUMEN

High resolution mass spectrometry was utilized to study the highly complex product mixtures resulting from electrochemical breakdown of lignin. As most of the chemical structures of the degradation products were unknown, enhanced mass defect filtering techniques were implemented to simplify the characterization of the mixtures. It was shown that the implemented ionization techniques had a major impact on the range of detectable breakdown products, with atmospheric pressure photoionization in negative ionization mode providing the widest coverage in our experiments. Different modified Kendrick mass plots were used as a basis for mass defect filtering, where Kendrick mass defect and the mass defect of the lignin-specific guaiacol (C7H7O2) monomeric unit were utilized, readily allowing class assignments independent of the oligomeric state of the product. The enhanced mass defect filtering strategy therefore provided rapid characterization of the sample composition. In addition, the structural similarities between the compounds within a degradation sequence were determined by comparison to a tentatively identified product of this compound series. In general, our analyses revealed that primarily breakdown products with low oxygen content were formed under electrochemical conditions using protic ionic liquids as solvent for lignin.


Asunto(s)
Lignina/química , Lignina/metabolismo , Espectrometría de Masas/métodos , Técnicas Electroquímicas , Conformación Molecular
12.
Anal Bioanal Chem ; 408(18): 4835-43, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27178557

RESUMEN

Lignin is the second most abundant natural biopolymer, and lignin wastes are therefore potentially significant sources for renewable chemicals such as fuel compounds, as alternatives to fossil fuels. Waste valorisation of lignin is currently limited to a few applications such as in the pulp industry, however, because of the lack of effective extraction and characterisation methods for the chemically highly complex mixtures after decomposition. Here, we have implemented high resolution mass spectrometry and developed two-dimensional mass defect matrix plots as a data visualisation tool, similar to the Kendrick mass defect plots implemented in fields such as petroleomics. These 2D matrix plots greatly simplified the highly convoluted lignin mass spectral data acquired from Fourier transform ion cyclotron resonance (FTICR)-mass spectrometry, and the derived metrics provided confident peak assignments and strongly improved structural mapping of lignin decomposition product series from the various linkages within the lignin polymer after electrochemical decomposition. Graphical Abstract 2D mass defect matrix plot for a lignin sample after decomposition.


Asunto(s)
Electroquímica/métodos , Lignina/análisis , Lignina/química , Espectrometría de Masas/métodos , Ensayo de Materiales/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Mezclas Complejas/análisis , Mezclas Complejas/química , Polímeros/análisis , Polímeros/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
Anal Bioanal Chem ; 408(28): 8203-8210, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27640206

RESUMEN

Lignin is the second most abundant natural polymer and a promising alternative energy source for conventional fossil fuels. In this study, we investigated transformations of lignin compounds under artificial UV light conditions at the molecular level. Such light-induced changes of composition profiles in nature after sun exposure have been studied for crude oil in the petroleomics field. We applied a similar high resolution mass spectrometry experimental strategy to lignin and demonstrated various data processing methods to reveal the characteristic differences between the extremely complex data sets of two sample sets, one native control before and one sample after photo-irradiation, using Fourier transform ion cyclotron resonance-mass spectrometry. Graphical abstract Kendrick mass defect versus nominal Kendrick mass for mass spectra of a control and UV-oxidized lignin sample.

14.
Phys Chem Chem Phys ; 18(11): 7695-701, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26907961

RESUMEN

Cation-disordered oxides have recently shown promising properties on the way to explore high-performance intercalation cathode materials for rechargeable Li-ion batteries. Here, stoichiometric cation-disordered Li2FeVyTi1-yO4 (y = 0, 0.2, 0.5) nanoparticles are studied. The substitution of V for Ti in Li2FeVyTi1-yO4 increases the content of active transition metals (Fe and V) and accordingly the amount of Li(+) (about (1 + y)Li(+) capacity per formula unit) that can be reversibly intercalated. It is found that Fe(3+)/Fe(2+) and V(4+)/V(3+) redox couples contribute to the overall capacity performance, whereas Ti(4+) remains mainly inert. There is no evidence for the presence of Fe(4+) species after charging to 4.8 V, as confirmed from the ex situ(57)Fe Mössbauer spectroscopy and the Fe K-edge absorption spectra. The redox couple reactions for iron and vanadium are examined by performing in situ synchrotron X-ray absorption spectroscopy. During charging/discharging, the spectral evolution of the K-edges for Fe and V confirms the reversible Fe(3+)/Fe(2+) and V(4+)/V(3+) redox reactions during cycling between 1.5 and 4.8 V.

15.
Angew Chem Int Ed Engl ; 54(9): 2792-5, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25639210

RESUMEN

The properties of ionic liquids are determined by the energy-balance between Coulomb-interaction, hydrogen-bonding, and dispersion forces. Out of a set of protic ionic liquids (PILs), including trialkylammonium cations and methylsulfonate and triflate anions we could detect the transfer from hydrogen-bonding to dispersion-dominated interaction between cation and anion in the PIL [(C6 H13 )3 NH][CF3 SO3 ]. The characteristic vibrational features for both ion-pair species can be detected and assigned in the far-infrared spectra. Our approach gives direct access to the relative strength of hydrogen-bonding and dispersion forces in a Coulomb-dominated system. Dispersion-corrected density functional theory (DFT) calculations support the experimental findings. The dispersion forces could be quantified to contribute about 2.3 kJ mol(-1) per additional methylene group in the alkyl chains of the ammonium cation.

16.
Chemphyschem ; 15(12): 2604-9, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-24925518

RESUMEN

The cation-anion and cation-solvent interactions in solutions of the protic ionic liquid (PIL) [Et3NH][I] dissolved in solvents of different polarities are studied by means of far infrared vibrational (FIR) spectroscopy and density functional theory (DFT) calculations. The dissociation of contact ion pairs (CIPs) and the resulting formation of solvent-separated ion pairs (SIPs) can be observed and analyzed as a function of solvent concentration, solvent polarity, and temperature. In apolar environments, the CIPs dominate for all solvent concentrations and temperatures. At high concentrations of polar solvents, SIPs are favored over CIPs. For these PIL/solvent mixtures, CIPs are reformed by increasing the temperature due to the reduced polarity of the solvent. Overall, this approach provides equilibrium constants, free energies, enthalpies, and entropies for ion-pair formation in trialkylammonium-containing PILs. These results have important implications for the understanding of solvation chemistry and the reactivity of ionic liquids.

17.
Angew Chem Int Ed Engl ; 52(47): 12439-42, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24115351

RESUMEN

Polarity controls the equilibrium constants and free energies of contact ion pairs (CIPs) and solvent-separated ion pairs (SIPs) in mixtures of protic ionic liquids and molecular solvents. The subtle balance between the ionic species was studied by far-infrared difference spectra and related DFT-calculated properties for solvents of low and high polarity and for different solvent concentrations.


Asunto(s)
Líquidos Iónicos/química , Solventes/química , Iones/química , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica
18.
Polymers (Basel) ; 15(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37447565

RESUMEN

Phosphorous is an essential element for the life of organisms, and phosphorus-based compounds have many uses in industry, such as flame retardancy reagents, ingredients in fertilizers, pyrotechnics, etc. Ionic liquids are salts with melting points lower than the boiling point of water. The term "polymerized ionic liquids" (PILs) refers to a class of polyelectrolytes that contain an ionic liquid (IL) species in each monomer repeating unit and are connected by a polymeric backbone to form macromolecular structures. PILs provide a new class of polymeric materials by combining some of the distinctive qualities of ILs in the polymer chain. Ionic liquids have been identified as attractive prospects for a variety of applications due to the high stability (thermal, chemical, and electrochemical) and high mobility of their ions, but their practical applicability is constrained because they lack the benefits of both liquids and solids, suffering from both leakage issues and excessive viscosity. PILs are garnering for developing non-volatile and non-flammable solid electrolytes. In this paper, we provide a brief review of phosphonium-based PILs, including their synthesis route, properties, advantages and drawbacks, and the comparison between nitrogen-based and phosphonium-based PILs. As phosphonium PILs can be used as polymer electrolytes in lithium-ion battery (LIB) applications, the conductivity and the thermo-mechanical properties are the most important features for this polymer electrolyte system. The chemical structure of phosphonium-based PILs that was reported in previous literature has been reviewed and summarized in this article. Generally, the phosphonium PILs that have more flexible backbones exhibit better conductivity values compared to the PILs that consist of a rigid backbone. At the end of this section, future directions for research regarding PILs are discussed, including the use of recyclable phosphorus from waste.

19.
Phys Chem Chem Phys ; 14(15): 5214-21, 2012 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-22398694

RESUMEN

Lignin is a component of lignocellulosic biomass and a promising matrix for recovering important renewable aromatic compounds. We present a new approach of electro-oxidative cleavage of lignin, dissolved in a special protic ionic liquid, using an anode with particular electro-catalytic activity. As appropriate ionic liquid triethylammonium methanesulfonate was identified, synthesised, explored for dissolution of alkali-lignin and used for electrolysis of 5 wt.% lignin solutions. As appropriate anode material, oxidation-stable ruthenium-vanadium-titanium mixed oxide electrodes were prepared and explored for their electro-catalytic activity. The electrolysis was performed at several potentials in the range from 1.0 V to 1.5 V (vs. an Ag pseudo reference electrode). A wide range of aromatic fragments was identified as cleavage products by means of GC-MS and HPLC measurements.


Asunto(s)
Líquidos Iónicos/química , Lignina/química , Catálisis , Cromatografía Líquida de Alta Presión , Electrodos , Electrólisis , Cromatografía de Gases y Espectrometría de Masas , Oxidación-Reducción , Rutenio/química , Titanio/química , Vanadio/química
20.
Phys Chem Chem Phys ; 14(20): 7392-9, 2012 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-22531826

RESUMEN

Sol-gel Ru(0.3)Sn(0.7)O(2) electrode coatings with crack-free and mud-crack surface morphology deposited onto a Ti-substrate are prepared for a comparative investigation of the microstructural effect on the electrochemical activity for Cl(2) production and the Cl(2) bubble evolution behaviour. For comparison, a state-of-the-art mud-crack commercial Ru(0.3)Ti(0.7)O(2) coating is used. The compact coating is potentially durable over a long term compared to the mud-crack coating due to the reduced penetration of the electrolyte. Ti L-edge X-ray absorption spectroscopy confirms that a TiO(x) interlayer is formed between the mud-crack Ru(0.3)Sn(0.7)O(2) coating and the underlying Ti-substrate due to the attack of the electrolyte. Meanwhile, the compact coating shows enhanced activity in comparison to the commercial coating, benefiting from the nanoparticle-nanoporosity architecture. The dependence of the overall electrode polarization behaviour on the local activity and the bubble evolution behaviour for the Ru(0.3)Sn(0.7)O(2) coatings with different surface microstructure are evaluated by means of scanning electrochemical microscopy and microscopic bubble imaging.


Asunto(s)
Cloro/química , Técnicas Electroquímicas , Óxidos/química , Rutenio/química , Estaño/química , Catálisis , Electrodos , Transición de Fase , Propiedades de Superficie , Titanio/química , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA