Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nat Mater ; 22(1): 18-35, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36446962

RESUMEN

Next-generation structural materials are expected to be lightweight, high-strength and tough composites with embedded functionalities to sense, adapt, self-repair, morph and restore. This Review highlights recent developments and concepts in bioinspired nanocomposites, emphasizing tailoring of the architecture, interphases and confinement to achieve dynamic and synergetic responses. We highlight cornerstone examples from natural materials with unique mechanical property combinations based on relatively simple building blocks produced in aqueous environments under ambient conditions. A particular focus is on structural hierarchies across multiple length scales to achieve multifunctionality and robustness. We further discuss recent advances, trends and emerging opportunities for combining biological and synthetic components, state-of-the-art characterization and modelling approaches to assess the physical principles underlying nature-inspired design and mechanical responses at multiple length scales. These multidisciplinary approaches promote the synergetic enhancement of individual materials properties and an improved predictive and prescriptive design of the next era of structural materials at multilength scales for a wide range of applications.


Asunto(s)
Materiales Biomiméticos , Nanocompuestos , Materiales Biomiméticos/química , Nanocompuestos/química , Agua/química
2.
Macromol Rapid Commun ; : e2300274, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474483

RESUMEN

Nitroxide groups covalently grafted to carbon fibers are used as anchoring sites for TEMPO-terminated polymers (poly-n-butylacrylate and polystyrene) in a "graft to" surface modification strategy. All surface-modified fibers are evaluated for their physical properties, showing that several treatments have enhanced the tensile strength and Young's modulus compared to the control fibers. Up to an 18% increase in tensile strength and 12% in Young's modulus are observed. Similarly, the evaluation of interfacial shear strength in an epoxy polymer shows improvements of up to 144% relative to the control sample. Interestingly, the polymer-grafted surfaces show smaller increases in interfacial shear strength compared to surfaces modified with a small molecule only. This counterintuitive result is attributed to the incompatibility, both chemical and physical, of the grafted polymers to the surrounding epoxy matrix. Molecular dynamics simulations of the interface suggest that the diminished increase in mechanical shear strength observed for the polymer grafted surfaces may be due to the lack of exposed chain ends, whereas the small molecule grafted interface exclusively presents chain ends to the resin interface, resulting in good improvements in mechanical properties.

3.
Phys Chem Chem Phys ; 25(43): 29614-29623, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37880987

RESUMEN

Solvate ionic liquids (SILs), equimolar amounts of lithium salts and polyether glymes, are well studied highly customisable "designer solvents". Herein the physical, thermal and ion mobility properties of SILs with increased LiTFSI (LiTFSA) concentration, with ligand 1 : >1 LiTFSI stoichiometric ratios, are presented. It was found that between 60-80 °C, the lithium cation diffuses up to 4 times faster than the corresponding anion or ligand (glyme). These systems varied from viscous liquids to self-supporting gels, though were found to thin exponentially when heated to mild temperatures (50-60 °C). They were also found to be thermally stable, up to 200 °C, well in excess of normal operating temperatures. Ion mobility, assessed under an electric potential via ionic conductivity, showed the benefit of SIL optimisation for attaining greater concentrations of Li+ cations to store charge during supercapacitor charging and discharging. Molecular dynamics simulations interrogate the mechanism of enhanced diffusion at high temperatures, revealing a lithium hopping mechanism that implicates the glyme in bridging two lithiums through changes in the denticity.

4.
J Am Chem Soc ; 144(25): 11189-11202, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35704840

RESUMEN

Photoredox catalysts are primarily selected based on ground and excited state properties, but their activity is also intrinsically tied to the nature of their reduced (or oxidized) intermediates. Catalyst reactivity often necessitates an inherent instability, thus these intermediates represent a mechanistic turning point that affords either product formation or side-reactions. In this work, we explore the scope of a previously demonstrated side-reaction that partially saturates one pyridine ring of the ancillary ligand in heteroleptic iridium(III) complexes. Using high-throughput synthesis and screening under photochemical conditions, we identified different chemical pathways, ultimately governed by ligand composition. The ancillary ligand was the key factor that determined photochemical stability. Following photoinitiated electron transfer from a sacrificial tertiary amine, the reduced intermediate of complexes containing 1,10-phenanthroline derivatives exhibited long-term stability. In contrast, complexes containing 2,2'-bipyridines were highly susceptible to hydrogen atom transfer and ancillary ligand modification. Detailed characterization of selected complexes before and after transformation showed differing effects on the ground and excited state reduction potentials dependent on the nature of the cyclometalating ligands and excited states. The implications of catalyst stability and reactivity in chemical synthesis was demonstrated in a model photoredox reaction.


Asunto(s)
Iridio , Fenantrolinas , Hidrógeno , Iridio/química , Ligandos
5.
Langmuir ; 38(16): 4979-4995, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35417182

RESUMEN

Historically, the irreversible reduction of aryldiazonium salts has provided a reliable method to modify surfaces, demonstrating a catalogue of suitable diazonium salts for targeted applications. This work expands the knowledge of diazonium salt chemistry to participate in surface electroinitiated emulsion polymerization (SEEP). The influence of concentration, electronic effects, and steric hindrance/regiochemistry of the diazonium salt initiator on the production of polymeric films is examined. The objective of this work is to determine if a polymer film can be tailored, controlling the thickness, density, and surface homogeneity using specific diazonium chemistry. The data presented herein demonstrate a significant difference in polymer films that can be achieved when selecting a variety of diazonium salts and vinylic monomers. A clear trend aligns with the electron-rich diazonium salt substitution providing the thickest films (up to 70.9 ± 17.8 nm) with increasing diazonium concentration and electron-withdrawing substitution achieving optimal homogeneity for the surface of the film at a 5 mM diazonium concentration.

6.
Macromol Rapid Commun ; 43(11): e2200114, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35344626

RESUMEN

Ti3 C2 Tx MXene (or "MXene" for simplicity) has gained noteworthy attention for its metal-like electrical conductivity and high electrochemical capacitance-a unique blend of properties attractive toward a wide range of applications such as energy storage, healthcare monitoring, and electromagnetic interference shielding. However, processing MXene architectures using conventional methods often deals with the presence of defects, voids, and isotropic flake arrangements, resulting in a trade-off in properties. Here, a sequential bridging (SB) strategy is reported to fabricate dense, freestanding MXene films of interconnected flakes with minimal defects, significantly enhancing its mechanical properties, specifically tensile strength (≈285 MPa) and breaking energy (≈16.1 MJ m-3 ), while retaining substantial values of electrical conductivity (≈3050 S cm-1 ) and electrochemical capacitance (≈920 F cm-3 ). This SB method first involves forming a cellulose nanocrystal-stitched MXene framework, followed by infiltration with structure-densifying calcium cations (Ca2+ ), resulting in tough and fatigue resistant films with anisotropic, evenly spaced, and strongly interconnected flakes - properties essential for developing high-performance energy-storage devices. It is anticipated that the knowledge gained in this work will be extended toward improving the robustness and retaining the electronic properties of 2D nanomaterial-based macroarchitectures.

7.
Chemistry ; 26(44): 10035-10044, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32428387

RESUMEN

Inverse vulcanization provides dynamic and responsive materials made from elemental sulfur and unsaturated cross-linkers. These polymers have been used in a variety of applications such as energy storage, infrared optics, repairable materials, environmental remediation, and precision fertilizers. In spite of these advances, there is a need for methods to recycle and reprocess these polymers. In this study, polymers prepared by inverse vulcanization are shown to undergo reactive compression molding. In this process, the reactive interfaces of sulfur polymers are brought into contact by mechanical compression. Upon heating these molds at relatively low temperatures (≈100 °C), chemical bonding occurs at the polymer interfaces by S-S metathesis. This method of processing is distinct from previous studies on inverse vulcanization because the polymers examined in this study do not form a liquid phase when heated. Neither compression nor heating alone was sufficient to mold these polymers into new architectures, so this is a new concept in the manipulation of sulfur polymers. Additionally, high-level ab initio calculations revealed that the weakest S-S bond in organic polysulfides decreases linearly in strength from a sulfur rank of 2 to 4, but then remains constant at about 100 kJ mol-1 for higher sulfur rank. This is critical information in engineering these polymers for S-S metathesis. Guided by this insight, polymer repair, recycling, and repurposing into new composites was demonstrated.

8.
Langmuir ; 36(26): 7217-7226, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32437618

RESUMEN

The ability to rapidly modify the surface of materials is a powerful means of tailoring interfaces and interphases for a variety of applications. In this work, we demonstrate the extensive scope of an electrochemically mediated surface modification technique, able to install a range of surface grafted polymers of varying polarity and functionality. The irreversible reduction of aryldiazonium salts initiates polymer growth and provides a "priming layer" for the polymers to attach to, covalently anchoring them to the surface. We show the broad applicability of this technique through polymerization of 19 acrylate monomers, as well as a noncarbonyl bearing monomer species, styrene. Surface bound films were characterized using FT-IR, ellipsometry, and water contact angle.

9.
BMC Biotechnol ; 18(1): 32, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29843701

RESUMEN

BACKGROUND: Solvate ionic liquids (SILs) are a new class of ionic liquids that are equimolar solutions of lithium bistrifluoromethanesulfonimide in either triglyme or tetraglyme, referred to as G3LiTFSA and G4LiTFSA, respectively. SILs play a role in energy storage lithium batteries, and have been proposed as potential alternatives to traditional organic solvents such as DMSO. G3TFSA and G4TFSA have been shown to exhibit no toxicity in vivo up to 0.5% (v/v), and solubilize small compounds (N,N-diethylaminobenzaldehyde) with full penetrance, similar to DMSO delivered DEAB. Herein, we compare the effects of storage (either at room temperature or - 20 °C) on DEAB solubilized in either DMSO, G3TFSA or G4TFSA to investigate compound degradation and efficacy. RESULTS: The findings show that DEAB stored at room temperature (RT) for 4 months solubilized in either G3TFSA, G4TFSA or DMSO displayed no loss of penetrance. The same was observed with stock solutions stored at - 20 °C for 4 months; however G4TFSA remained in a liquid state compared to both G3TFSA and DMSO. Moreover, we examined the ability of G3TFSA and G4TFSA to solubilize another small molecular therapeutic, the FGFR antagonist SU5402. G4TFSA, unlike G3TFSA solubilized SU5402 and displayed similar phenotypic characteristics and reduced dlx2a expression as reported and shown with SU5402 in DMSO; albeit more penetrative. CONCLUSION: This study validates the use of these ionic liquids as a potential replacement for DMSO in vivo as organic solubilizing agents.


Asunto(s)
Dimetilsulfóxido/análisis , Líquidos Iónicos/análisis , Bibliotecas de Moléculas Pequeñas , Animales , Modelos Animales , Pez Cebra
10.
Chemphyschem ; 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30253016

RESUMEN

Technologies that enable surface modification are in high demand and are critical for the implementation of new functional materials and devices. Here, we describe the first modification of a carbon surface (in this case carbon fiber) using the sulfur-fluoride exchange (SuFEx) reaction. The parent sulfur (VI) fluoride moiety can be installed directly to the surface via electrochemical deposition of the fluorosulfate phenyldiazonium tetrafluoroborate salt, or by 'SuFExing' a phenol on the carbon surface followed by treatment of the material with SO2 F2 ; similar to a 'graft to' or 'graft from' functionalization approach. We demonstrate that these SuFEx-able surfaces readily undergo exchange with aryl silyl ethers, and that the subsequent sulfate linkages are themselves stable under electrochemical redox conditions. Finally, we showcase the utility of the SuFEx chemistry by installing a pendant amino group to the fiber surface resulting in interfacial shear strength improvements of up to 130 % in epoxy resin.

11.
Phys Chem Chem Phys ; 18(29): 19975, 2016 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-27388950

RESUMEN

Correction for 'Determination of Kamlet-Taft parameters for selected solvate ionic liquids' by Daniel J. Eyckens et al., Phys. Chem. Chem. Phys., 2016, 18, 13153-13157.

12.
Phys Chem Chem Phys ; 18(19): 13153-7, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27122349

RESUMEN

The normalised polarity E and Kamlet-Taft parameters of recently described solvate ionic liquids, composed of lithium bis(trifluoromethyl)sulfonimide (LiTFSI) in tri- () or tetraglyme () have been determined and compared to the parent glyme ( and ). We show that these solvate ionic liquids have a high polarity (, (E) = 1.03; , (E) = 1.03) and display very high electron pair accepting characteristics (, α = 1.32; , α = 1.35). Molecular dynamics simulations suggest that the chelated lithium cation is responsible for this observation. The relatively small hydrogen bond acceptor (ß) values for these systems (, ß = 0.41; , ß = 0.37) are thought to be due primarily to the TFSI anion, which is supplemented slightly by the glyme oxygen atom. In addition, these solvate ionic liquids are found to have a high polarisability (, π* = 0.94; , π* = 0.90).

13.
Analyst ; 139(22): 6028-35, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25271898

RESUMEN

The chemiluminescence from four cyclometalated iridium(III) complexes containing an ancillary bathophenanthroline-disulfonate ligand exhibited a wide range of emission colours (green to red), and in some cases intensities that are far greater than the commonly employed benchmark reagent, [Ru(bpy)3](2+). A similar complex incorporating a sulfonated triazolylpyridine-based ligand enabled the emission to be shifted into the blue region of the spectrum, but the responses with this complex were relatively poor. DFT calculations of electronic structure and emission spectra support the experimental findings.

14.
Bioorg Med Chem Lett ; 24(21): 4948-53, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25301770

RESUMEN

A versatile and high yielding synthesis of novel androgen receptor (AR) antagonists is presented. Using this methodology, six 1,4-substituted-1,2,3-triazole derived bicalutamide mimics were synthesised in five steps and in isolated overall yields from 41% to 85%. Evaluation of these compounds for their anti-proliferative properties against androgen dependent (LNCaP) and independent (PC-3) cells showed promising IC50 values of 34-45 µM and 29-151 µM, respectively. The data suggest that the latter compounds may be an excellent starting point for the development of prostate cancer therapeutics for both androgen dependent and independent forms of this disease. Docking of these compounds (each enantiomer) in silico into the T877A mutated androgen receptor, as possessed by LNCaP cells, was also undertaken.


Asunto(s)
Antagonistas de Andrógenos/química , Antagonistas de Receptores Androgénicos/síntesis química , Antagonistas de Receptores Androgénicos/farmacología , Anilidas/química , Nitrilos/química , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/química , Compuestos de Tosilo/química , Triazoles/química , Antagonistas de Andrógenos/farmacología , Anilidas/farmacología , Supervivencia Celular/efectos de los fármacos , Humanos , Masculino , Nitrilos/farmacología , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Compuestos de Tosilo/farmacología , Células Tumorales Cultivadas
15.
Bioorg Med Chem ; 22(9): 2692-706, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24726305

RESUMEN

A range of 1,4-substituted-1,2,3-N-phenyltriazoles were synthesized and evaluated as non-steroidal androgen receptor (AR) antagonists. The motivation for this study was to replace the N-phenyl amide portion of small molecule antiandrogens with a 1,2,3-triazole and determine effects, if any, on biological activity. The synthetic methodology presented herein is robust, high yielding and extremely rapid. Using this methodology a series of 17 N-aryl triazoles were synthesized from commercially available starting materials in less than 3h. After preliminary biological screening at 20 and 40 µM, the most promising three compounds were found to display IC50 values of 40-50 µM against androgen dependent (LNCaP) cells and serve as a starting point for further structure-activity investigations. All compounds in this work were the focus of an in silico study to dock the compounds into the human androgen receptor ligand binding domain (hARLBD) and compare their predicted binding affinity with known antiandrogens. A comparison of receptor-ligand interactions for the wild type and T877A mutant AR revealed two novel polar interactions. One with Q738 of the wild type site and the second with the mutated A877 residue.


Asunto(s)
Antagonistas de Receptores Androgénicos/química , Receptores Androgénicos/química , Triazoles/química , Antagonistas de Receptores Androgénicos/síntesis química , Antagonistas de Receptores Androgénicos/toxicidad , Sitios de Unión , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Masculino , Simulación del Acoplamiento Molecular , Mutación , Estructura Terciaria de Proteína , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/toxicidad
16.
Org Biomol Chem ; 11(18): 2951-60, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23455677

RESUMEN

This study describes the synthesis of five novel C2-symmetric organocatalysts that facilitate the on-water asymmetric aldol reaction at low catalyst loading (1 mol%) without the use of additives. Each catalyst is composed of two diprolinamide units joined by a symmetric alkyl bridging group allowing for systematic modulation of catalytic site proximity. Typically, catalysts in this manuscript which bear the catalytic units in close proximity gave the best reaction outcomes in terms of conversion (up to >99%), diastereomeric ratio (4/96, syn/anti) and enantiomeric excess (up to 97%). This effect has been attributed to the assembly of a chiral pocket, facilitated by hydrogen bonding at the oil-in-water interface.

17.
Artículo en Inglés | MEDLINE | ID: mdl-24427045

RESUMEN

In the title compound, C15H12N2S2, the two phenyl rings and the planar (r.m.s. deviation = 0.002 Å) thia-diazole ring adopt a propeller conformation about the central C-H axis with H-C-C-C(phen-yl) torsion angles of 44 and 42° and an H-C-N-C(thia-diazole) torsion angle of 28°. Intra-molecular C-H⋯S and C-H⋯N contacts are observed. In the crystal, centrosymmetrically related mol-ecules associate through C-H⋯π inter-actions. These are connected into a supra-molecular chain along [101] by C-H⋯N inter-actions.

18.
Chem Commun (Camb) ; 59(65): 9860-9863, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37490281

RESUMEN

A silver catalysed radical decarboxylation process was used to graft a copolymer (4 : 1; methylacrylate/acrylic acid) onto short carbon fibres. Surface grafting was confirmed by XPS, SEM and TGA, suggesting that the polymer accounted for 10% of the modified materials mass. Incorporation of these surface enhanced carbon fibres into an epoxy resin gave composites demonstrating an increase in ductility and a clear change in failure mode from adhesive, at the fibre-matrix interface, to cohesive, within the matrix polymer itself.

19.
Chempluschem ; 88(2): e202200335, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36449627

RESUMEN

Bonding dissimilar materials has been a persistent challenge for decades. This paper presents a method to modify a stainless steel surface (316 L), routinely used in medical applications to enable the significant adhesion of a biopolymer (silk fibroin). The metallic surface was first covalently grafting with polyacrylamide, to enable a hydrogen bonding compatible surface. The polymerisation was initiated via the irreversible electrochemical reduction of a 4-nitrobenzene diazonium salt (20 mM), in the presence of an acrylamide monomer (1 M) at progressively faster scan rates (0.01 V/s to 1 V/s). Examination of the modified samples by FT-IR was consistent with successful surface modification, via observations of the acrylamide carbonyl (1600-1650 cm-1 ) was observed, with more intense peaks correlating to slower scan rates. Similar observations were made with respect to increasing surface polarity, assessed by water contact angle. Reductions of >60° were observed for the grafted surfaces, relative to the unmodified control materials, indicating a surface able to undergo significant hydrogen bonding. The adhesion of silk to the metallic surface was quantified using a lap shear test, effectively using silk fibroin as an adhesive. Adhesion improvements of 5-7-fold, from 4.1 MPa to 29.3 MPa per gram of silk fibroin, were observed for the treated samples, highlighting the beneficial effect of this surface treatment. The methods developed in this work can be transferred to any metallic (or conductive) surface and can be tailored to complement any desired interface.


Asunto(s)
Fibroínas , Acero Inoxidable , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Acrilamidas
20.
Chempluschem ; : e202300555, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036452

RESUMEN

Silk fibroin interactions with metallic surfaces can provide utility for medical materials and devices. Toward this goal, titanium alloy (Ti6Al4 V) was covalently grafted with polyacrylamide via electrochemically reducing 4-nitrobenzene diazonium salt in the presence of acrylamide. Analysis of the modified surfaces with FT-IR spectra, SEM and AFM were consistent with surface grafting. Functionalised titanium samples with a silk fibroin membrane, with and without impregnated therapeutics, were used to assess cytocompatibility and drug delivery. Initial cytocompatibility experiments using fibroblasts showed that the functionalised samples, both with and without silk fibroin coatings, supported significant increases between 72-136 % in cell metabolism, compared to the controls after 7 days. A 7-days release profiling showed consistent bacterial inhibition through gentamicin release with average inhibition zones of 239 mm2 . Over a 5-week period, silk fibroin coated samples, both with and without growth factors, supported better human mesenchymal stem cell metabolism with increases reaching 1031 % and 388 %, respectively, compared to samples without the silk fibroin coating with.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA