Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 103(22): 223203, 2009 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-20366094

RESUMEN

We investigate the collisional stability of a sample of 40K atoms immersed in a tunable spin mixture of 6Li atoms. In this three-component Fermi-Fermi mixture, we find very low loss rates in a wide range of interactions as long as molecule formation of 6Li is avoided. The stable fermionic mixture with two resonantly interacting spin states of one species together with another species is a promising system for a broad variety of phenomena in few- and many-body quantum physics.

2.
Phys Rev Lett ; 100(5): 053201, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18352370

RESUMEN

We report on the observation of Feshbach resonances in an ultracold mixture of two fermionic species, (6)Li and (40)K. The experimental data are interpreted using a simple asymptotic bound state model and full coupled channels calculations. This unambiguously assigns the observed resonances in terms of various s- and p-wave molecular states and fully characterizes the ground-state scattering properties in any combination of spin states.

3.
Phys Rev Lett ; 91(24): 240402, 2003 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-14683094

RESUMEN

We report on the production of a pure sample of up to 3 x 10(5) optically trapped molecules from a Fermi gas of 6Li atoms. The dimers are formed by three-body recombination near a Feshbach resonance. For purification, a Stern-Gerlach selection technique is used that efficiently removes all trapped atoms from the atom-molecule mixture. The behavior of the purified molecular sample shows a striking dependence on the applied magnetic field. For very weakly bound molecules near the Feshbach resonance, the gas exhibits a remarkable stability with respect to collisional decay.

4.
Science ; 302(5653): 2101-3, 2003 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-14615548

RESUMEN

We report on the Bose-Einstein condensation of more than 10(5) Li2 molecules in an optical trap starting from a spin mixture of fermionic lithium atoms. During forced evaporative cooling, the molecules are formed by three-body recombination near a Feshbach resonance and finally condense in a long-lived thermal equilibrium state. We measured the characteristic frequency of a collective excitation mode and demonstrated the magnetic field-dependent mean field by controlled condensate spilling.

5.
Phys Rev Lett ; 89(27): 273202, 2002 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-12513205

RESUMEN

We study elastic collisions in an optically trapped spin mixture of fermionic lithium atoms in the presence of magnetic fields up to 1.5 kG by measuring evaporative loss. Our experiments confirm the expected magnetic tunability of the scattering length by showing the main features of elastic scattering according to recent calculations. We measure the zero crossing of the scattering length at 530(3) G which is associated with a predicted Feshbach resonance at approximately 850 G. Beyond the resonance we observe the expected large cross section in the triplet scattering regime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA