Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Cell ; 84(8): 1406-1421.e8, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38490199

RESUMEN

Enhancers bind transcription factors, chromatin regulators, and non-coding transcripts to modulate the expression of target genes. Here, we report 3D genome structures of single mouse ES cells as they are induced to exit pluripotency and transition through a formative stage prior to undergoing neuroectodermal differentiation. We find that there is a remarkable reorganization of 3D genome structure where inter-chromosomal intermingling increases dramatically in the formative state. This intermingling is associated with the formation of a large number of multiway hubs that bring together enhancers and promoters with similar chromatin states from typically 5-8 distant chromosomal sites that are often separated by many Mb from each other. In the formative state, genes important for pluripotency exit establish contacts with emerging enhancers within these multiway hubs, suggesting that the structural changes we have observed may play an important role in modulating transcription and establishing new cell identities.


Asunto(s)
Células Madre Embrionarias de Ratones , Secuencias Reguladoras de Ácidos Nucleicos , Ratones , Animales , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos
2.
Mol Cell ; 71(1): 56-72.e4, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30008319

RESUMEN

Chromatin remodeling complexes play essential roles in metazoan development through widespread control of gene expression, but the precise molecular mechanisms by which they do this in vivo remain ill defined. Using an inducible system with fine temporal resolution, we show that the nucleosome remodeling and deacetylation (NuRD) complex controls chromatin architecture and the protein binding repertoire at regulatory regions during cell state transitions. This is primarily exerted through its nucleosome remodeling activity while deacetylation at H3K27 follows changes in gene expression. Additionally, NuRD activity influences association of RNA polymerase II at transcription start sites and subsequent nascent transcript production, thereby guiding the establishment of lineage-appropriate transcriptional programs. These findings provide a detailed molecular picture of genome-wide modulation of lineage-specific transcription by an essential chromatin remodeling complex as well as insight into the orchestration of molecular events involved in transcriptional transitions in vivo. VIDEO ABSTRACT.


Asunto(s)
Regulación de la Expresión Génica , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Nucleosomas/metabolismo , ARN Polimerasa II/metabolismo , Transcripción Genética , Acetilación , Animales , Línea Celular , Histonas/genética , Histonas/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Ratones , Células Madre Embrionarias de Ratones/citología , Nucleosomas/genética , ARN Polimerasa II/genética , Sitio de Iniciación de la Transcripción
3.
EMBO J ; 38(12)2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31036553

RESUMEN

Multiprotein chromatin remodelling complexes show remarkable conservation of function amongst metazoans, even though components present in invertebrates are often found as multiple paralogous proteins in vertebrate complexes. In some cases, these paralogues specify distinct biochemical and/or functional activities in vertebrate cells. Here, we set out to define the biochemical and functional diversity encoded by one such group of proteins within the mammalian Nucleosome Remodelling and Deacetylation (NuRD) complex: Mta1, Mta2 and Mta3. We find that, in contrast to what has been described in somatic cells, MTA proteins are not mutually exclusive within embryonic stem (ES) cell NuRD and, despite subtle differences in chromatin binding and biochemical interactions, serve largely redundant functions. ES cells lacking all three MTA proteins exhibit complete NuRD loss of function and are viable, allowing us to identify a previously unreported function for NuRD in reducing transcriptional noise, which is essential for maintaining a proper differentiation trajectory during early stages of lineage commitment.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/fisiología , Transcripción Genética , Animales , Células Cultivadas , Reprogramación Celular/genética , Proteínas de Unión al ADN/genética , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/fisiología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Relación Señal-Ruido , Transactivadores/genética , Transactivadores/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Transcripción Genética/fisiología
4.
Nature ; 544(7648): 59-64, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28289288

RESUMEN

The folding of genomic DNA from the beads-on-a-string-like structure of nucleosomes into higher-order assemblies is crucially linked to nuclear processes. Here we calculate 3D structures of entire mammalian genomes using data from a new chromosome conformation capture procedure that allows us to first image and then process single cells. The technique enables genome folding to be examined at a scale of less than 100 kb, and chromosome structures to be validated. The structures of individual topological-associated domains and loops vary substantially from cell to cell. By contrast, A and B compartments, lamina-associated domains and active enhancers and promoters are organized in a consistent way on a genome-wide basis in every cell, suggesting that they could drive chromosome and genome folding. By studying genes regulated by pluripotency factor and nucleosome remodelling deacetylase (NuRD), we illustrate how the determination of single-cell genome structure provides a new approach for investigating biological processes.


Asunto(s)
Ensamble y Desensamble de Cromatina , Genoma , Imagen Molecular/métodos , Nucleosomas/química , Análisis de la Célula Individual/métodos , Animales , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas de los Mamíferos/química , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , Elementos de Facilitación Genéticos , Fase G1 , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genoma/genética , Haploidia , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Modelos Moleculares , Conformación Molecular , Imagen Molecular/normas , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Reproducibilidad de los Resultados , Análisis de la Célula Individual/normas , Cohesinas
5.
Development ; 143(17): 3074-84, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27471257

RESUMEN

Sall4 is an essential transcription factor for early mammalian development and is frequently overexpressed in cancer. Although it is reported to play an important role in embryonic stem cell (ESC) self-renewal, whether it is an essential pluripotency factor has been disputed. Here, we show that Sall4 is dispensable for mouse ESC pluripotency. Sall4 is an enhancer-binding protein that prevents precocious activation of the neural gene expression programme in ESCs but is not required for maintenance of the pluripotency gene regulatory network. Although a proportion of Sall4 protein physically associates with the Nucleosome Remodelling and Deacetylase (NuRD) complex, Sall4 neither recruits NuRD to chromatin nor influences transcription via NuRD; rather, free Sall4 protein regulates transcription independently of NuRD. We propose a model whereby enhancer binding by Sall4 and other pluripotency-associated transcription factors is responsible for maintaining the balance between transcriptional programmes in pluripotent cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Inmunoprecipitación de Cromatina , Biología Computacional , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Espectrometría de Masas , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Nucleosomas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética
6.
Development ; 142(15): 2586-97, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26116663

RESUMEN

Chromatin remodelling proteins are essential for different aspects of metazoan biology, yet functional details of why these proteins are important are lacking. Although it is possible to describe the biochemistry of how they remodel chromatin, their chromatin-binding profiles in cell lines, and gene expression changes upon loss of a given protein, in very few cases can this easily translate into an understanding of how the function of that protein actually influences a developmental process. Here, we investigate how the chromatin remodelling protein CHD4 facilitates the first lineage decision in mammalian embryogenesis. Embryos lacking CHD4 can form a morphologically normal early blastocyst, but are unable to successfully complete the first lineage decision and form functional trophectoderm (TE). In the absence of a functional TE, Chd4 mutant blastocysts do not implant and are hence not viable. By measuring transcript levels in single cells from early embryos, we show that CHD4 influences the frequency at which unspecified cells in preimplantation stage embryos express lineage markers prior to the execution of this first lineage decision. In the absence of CHD4, this frequency is increased in 16-cell embryos, and by the blastocyst stage cells fail to properly adopt a TE gene expression programme. We propose that CHD4 allows cells to undertake lineage commitment in vivo by modulating the frequency with which lineage-specification genes are expressed. This provides novel insight into both how lineage decisions are made in mammalian cells, and how a chromatin remodelling protein functions to facilitate lineage commitment.


Asunto(s)
Blastocisto/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , ADN Helicasas/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Animales , Ensamble y Desensamble de Cromatina/genética , Cruzamientos Genéticos , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Etiquetado Corte-Fin in Situ , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa Multiplex , Análisis de la Célula Individual
7.
Adv Anat Embryol Cell Biol ; 229: 3-14, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29177761

RESUMEN

The very first cell divisions in mammalian embryogenesis produce a ball of cells, each with the potential to form any cell in the developing embryo or placenta. At some point, the embryo produces enough cells that some are located on the outside of the embryo, while others are completely surrounded by other cells. It is at this point that cells undergo the very first lineage commitment event: outer cells form the trophectoderm and lose the potential to form embryonic lineages, while inner cells form the Inner Cell Mass, which retain embryonic potential. Cell identity is defined by gene expression patterns, and gene expression is largely controlled by how the DNA is packaged into chromatin. A number of protein complexes exist which are able to use the energy of ATP to remodel chromatin: that is, to alter the nucleosome topology of chromatin. Here, we summarise the evidence that chromatin remodellers play essential roles in the successful completion of preimplantation development in mammals and describe recent efforts to understand the molecular mechanisms through which chromatin remodellers facilitate the successful completion of the first cell fate decisions in mammalian embryogenesis.


Asunto(s)
Diferenciación Celular , Ensamble y Desensamble de Cromatina , Desarrollo Embrionario , Animales , Blastocisto , Cromatina , Embrión de Mamíferos , Desarrollo Embrionario/genética
8.
Nature ; 469(7329): 231-5, 2011 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-21196933

RESUMEN

AP-1 (activator protein 1) activity is strongly induced in response to numerous signals, including growth factors, cytokines and extracellular stresses. The proto-oncoprotein c-Jun belongs to the AP-1 group of transcription factors and it is a crucial regulator of intestinal progenitor proliferation and tumorigenesis. An important mechanism of AP-1 stimulation is phosphorylation of c-Jun by the Jun amino-terminal kinases (JNKs). N-terminal phosphorylation of the c-Jun transactivation domain increases target gene transcription, but a molecular explanation was elusive. Here we show that unphosphorylated, but not N-terminally phosphorylated c-Jun, interacts with Mbd3 and thereby recruits the nucleosome remodelling and histone deacetylation (NuRD) repressor complex. Mbd3 depletion in colon cancer cells increased histone acetylation at AP-1-dependent promoters, which resulted in increased target gene expression. The intestinal stem cell marker lgr5 was identified as a novel target gene controlled by c-Jun/Mbd3. Gut-specific conditional deletion of mbd3 (mbd3(ΔG/ΔG) mice) stimulated c-Jun activity and increased progenitor cell proliferation. In response to inflammation, mdb3 deficiency resulted in colonic hyperproliferation and mbd3(ΔG/ΔG) mice showed markedly increased susceptibility to colitis-induced tumorigenesis. Notably, concomitant inactivation of a single allele of c-jun reverted physiological and pathological hyperproliferation, as well as the increased tumorigenesis in mbd3(ΔG/ΔG) mice. Thus the transactivation domain of c-Jun recruits Mbd3/NuRD to AP-1 target genes to mediate gene repression, and this repression is relieved by JNK-mediated c-Jun N-terminal phosphorylation.


Asunto(s)
Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/antagonistas & inhibidores , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Proteínas Proto-Oncogénicas c-jun/química , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Acetilación , Animales , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Proteínas de Unión al ADN/deficiencia , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Intestinos/citología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Ratones , Fosforilación , Regiones Promotoras Genéticas/genética , Unión Proteica , Receptores Acoplados a Proteínas G/genética , Células Madre/citología , Factores de Transcripción/deficiencia
9.
EMBO J ; 31(3): 593-605, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22139358

RESUMEN

Pluripotent cells possess the ability to differentiate into any cell type. Commitment to differentiate into specific lineages requires strict control of gene expression to coordinate the downregulation of lineage inappropriate genes while enabling the expression of lineage-specific genes. The nucleosome remodelling and deacetylation complex (NuRD) is required for lineage commitment of pluripotent cells; however, the mechanism through which it exerts this effect has not been defined. Here, we show that histone deacetylation by NuRD specifies recruitment for Polycomb Repressive Complex 2 (PRC2) in embryonic stem (ES) cells. NuRD-mediated deacetylation of histone H3K27 enables PRC2 recruitment and subsequent H3K27 trimethylation at NuRD target promoters. We propose a gene-specific mechanism for modulating expression of transcriptionally poised genes whereby NuRD controls the balance between acetylation and methylation of histones, thereby precisely directing the expression of genes critical for embryonic development.


Asunto(s)
Silenciador del Gen , Histonas/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/fisiología , Proteínas Represoras/metabolismo , Acetilación , Animales , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Proteínas del Grupo Polycomb , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Development ; 140(3): 505-12, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23293282

RESUMEN

Through decades of research it has been established that some chromatin-modifying proteins can repress transcription, and thus are generally termed 'repressors'. Although classic repressors undoubtedly silence transcription, genome-wide studies have shown that many repressors are associated with actively transcribed loci and that this is a widespread phenomenon. Here, we review the evidence for the presence of repressors at actively transcribed regions and assess what roles they might be playing. We propose that the modulation of expression levels by chromatin-modifying, co-repressor complexes provides transcriptional fine-tuning that drives development.


Asunto(s)
Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Animales , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Activación Enzimática , Histona Desacetilasas/genética , Lisina/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Proteínas Represoras/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
11.
Biol Open ; 13(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38149716

RESUMEN

As cells exit the pluripotent state and begin to commit to a specific lineage they must activate genes appropriate for that lineage while silencing genes associated with pluripotency and preventing activation of lineage-inappropriate genes. The Nucleosome Remodelling and Deacetylation (NuRD) complex is essential for pluripotent cells to successfully undergo lineage commitment. NuRD controls nucleosome density at regulatory sequences to facilitate transcriptional responses, and also has been shown to prevent unscheduled transcription (transcriptional noise) in undifferentiated pluripotent cells. How these activities combine to ensure cells engage a gene expression program suitable for successful lineage commitment has not been determined. Here, we show that NuRD is not required to silence all genes. Rather, it restricts expression of genes primed for activation upon exit from the pluripotent state, but maintains them in a transcriptionally permissive state in self-renewing conditions, which facilitates their subsequent activation upon exit from naïve pluripotency. We further show that NuRD coordinates gene expression changes, which acts to maintain a barrier between different stable states. Thus NuRD-mediated chromatin remodelling serves multiple functions, including reducing transcriptional noise, priming genes for activation and coordinating the transcriptional response to facilitate lineage commitment.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Nucleosomas , Diferenciación Celular/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética
12.
Dev Biol ; 363(1): 62-73, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22206758

RESUMEN

The Sin3a/HDAC co-repressor complex is a critical regulator of transcription networks that govern cell cycle control and apoptosis throughout development. Previous studies have identified Sin3a as essential for embryonic development around the time of implantation, during which the epiblast cell cycle is uniquely structured to achieve very rapid divisions with little tolerance of DNA damage. This study investigates the specific requirement for Sin3a in the early mouse embryo and shows that embryos lacking Sin3a suffer unresolved DNA damage and acute p53-independent apoptosis specifically in the E3.5-4.5 epiblast. Surprisingly, Myc and E2F targets in Sin3a-null ICMs are downregulated, suggesting a central but non-canonical role for Sin3a in regulating the pluripotent embryonic cell cycle. ES cells deleted for Sin3a mount a DNA damage response indicative of unresolved double-strand breaks, profoundly arrest at G2, and undergo apoptosis. These results indicate that Sin3a protects the genomic integrity of pluripotent embryonic cells and governs their unusual cell cycle.


Asunto(s)
Células Madre Embrionarias/metabolismo , Inestabilidad Genómica/genética , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/genética , Animales , Apoptosis/genética , Western Blotting , Puntos de Control del Ciclo Celular/genética , Supervivencia Celular/genética , Células Cultivadas , Daño del ADN , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Citometría de Flujo , Fase G2/genética , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Complejo Correpresor Histona Desacetilasa y Sin3
13.
Biochem Soc Trans ; 41(3): 777-82, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23697937

RESUMEN

The CHD4 (chromodomain-helicase-DNA-binding 4) (or Mi-2ß) protein is a founding component of the NuRD (nucleosome remodelling and deacetylation) complex. NuRD has long been known to function in transcriptional regulation, and is conserved throughout the animal and plant kingdoms. In recent years, evidence has steadily accumulated indicating that CHD4 can both function outside of the NuRD complex and also play important roles in cellular processes other than transcriptional regulation. A number of loss-of-function studies have identified important roles for CHD4 in the DNA-damage response and in cell cycle progression through S-phase and into G2. Furthermore, as part of NuRD, it participates in regulating acetylation levels of p53, thereby indirectly regulating the G1/S cell cycle checkpoint. Although CHD4 has a somewhat complicated relationship with the cell cycle, recent evidence indicates that CHD4 may exert some tumour-suppressor functions in human carcinogenesis. CHD4 is a defining member of the NuRD complex, but evidence is accumulating that CHD4 also plays important NuRD-independent roles in the DNA-damage response and cell cycle progression, as well as in transcriptional regulation.


Asunto(s)
Autoantígenos/metabolismo , Ciclo Celular/fisiología , Daño del ADN/fisiología , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Animales , Autoantígenos/genética , Ciclo Celular/genética , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Daño del ADN/genética , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Modelos Biológicos , Neoplasias/genética , Neoplasias/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo
14.
Nat Cell Biol ; 8(3): 285-92, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16462733

RESUMEN

Cells of early mammalian embryos have the potential to develop into any adult cell type, and are thus said to be pluripotent. Pluripotency is lost during embryogenesis as cells commit to specific developmental pathways. Although restriction of developmental potential is often associated with repression of inappropriate genetic programmes, the role of epigenetic silencing during early lineage commitment remains undefined. Here, we used mouse embryonic stem cells to study the function of epigenetic silencing in pluripotent cells. Embryonic stem cells lacking Mbd3 - a component of the nucleosome remodelling and histone deacetylation (NuRD) complex - were viable but failed to completely silence genes that are expressed before implantation of the embryo. Mbd3-deficient embryonic stem cells could be maintained in the absence of leukaemia inhibitory factor (LIF) and could initiate differentiation in embryoid bodies or chimeric embryos, but failed to commit to developmental lineages. Our findings define a role for epigenetic silencing in the cell-fate commitment of pluripotent cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Histona Desacetilasas/metabolismo , Células Madre Pluripotentes/citología , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/citología , Epigénesis Genética , Silenciador del Gen , Histona Desacetilasas/genética , Interleucina-6/fisiología , Factor Inhibidor de Leucemia , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Ratones , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/genética
15.
Nat Genet ; 34(2): 145-7, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12730693

RESUMEN

Gene silencing through de novo methylation of CpG island promoters contributes to cancer. We find that Mbd2, which recruits co-repressor complexes to methylated DNA, is essential for efficient tumorigenesis in the mouse intestine. As Mbd2-deficient mice are viable and fertile, their resistance to intestinal cancer may be of therapeutic relevance.


Asunto(s)
Proteínas de Unión al ADN/deficiencia , Neoplasias Intestinales/prevención & control , Adenoma/etiología , Adenoma/genética , Adenoma/patología , Adenoma/prevención & control , Animales , Islas de CpG , Metilación de ADN , Proteínas de Unión al ADN/genética , Silenciador del Gen , Genes APC , Heterocigoto , Homocigoto , Neoplasias Intestinales/etiología , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
16.
Mol Cell Biol ; 27(10): 3750-7, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17353271

RESUMEN

Transcription of the Xist gene triggers X chromosome inactivation in cis and is therefore silenced on the X chromosome that remains active. DNA methylation contributes to this silencing, but the mechanism is unknown. As methylated DNA binding proteins (MBPs) are potential mediators of gene silencing by DNA methylation, we asked whether MBP-deficient cell lines could maintain Xist repression. The absence of Mbd2 caused significant low-level reactivation of Xist, but silencing was restored by exogenous Mbd2. In contrast, deficiencies of Mbd1, MeCP2, and Kaiso had no detectable effect, indicating that MBPs are not functionally redundant at this locus. Xist repression in Mbd2-null cells was hypersensitive to the histone deacetylase inhibitor trichostatin A and to depletion of the DNA methyltransferase Dnmt1. These synergies implicate Mbd2 as a mediator of the DNA methylation signal at this locus. The presence of redundant mechanisms to enforce repression at Xist and other loci is compatible with the hypothesis that "stacking" of imperfect repressive tendencies may be an evolutionary strategy to ensure leakproof gene silencing.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Silenciador del Gen , ARN no Traducido/metabolismo , Animales , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Proteínas de Unión al ADN/genética , Inhibidores Enzimáticos/metabolismo , Inhibidores de Histona Desacetilasas , Histonas/metabolismo , Ácidos Hidroxámicos/metabolismo , Masculino , Ratones , ARN Largo no Codificante , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN no Traducido/genética , Cromosoma X
17.
Stem Cell Res ; 46: 101867, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32535494

RESUMEN

Differentiation of mammalian pluripotent cells involves large-scale changes in transcription and, among the molecules that orchestrate these changes, chromatin remodellers are essential to initiate, establish and maintain a new gene regulatory network. The Nucleosome Remodelling and Deacetylation (NuRD) complex is a highly conserved chromatin remodeller which fine-tunes gene expression in embryonic stem cells. While the function of NuRD in mouse pluripotent cells has been well defined, no study yet has defined NuRD function in human pluripotent cells. Here we find that while NuRD activity is required for lineage commitment from primed pluripotency in both human and mouse cells, the nature of this requirement is surprisingly different. While mouse embryonic stem cells (mESC) and epiblast stem cells (mEpiSC) require NuRD to maintain an appropriate differentiation trajectory as judged by gene expression profiling, human induced pluripotent stem cells (hiPSC) lacking NuRD fail to even initiate these trajectories. Further, while NuRD activity is dispensable for self-renewal of mESCs and mEpiSCs, hiPSCs require NuRD to maintain a stable self-renewing state. These studies reveal that failure to properly fine-tune gene expression and/or to reduce transcriptional noise through the action of a highly conserved chromatin remodeller can have different consequences in human and mouse pluripotent stem cells.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Animales , Diferenciación Celular , Proteínas de Unión al ADN/genética , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Ratones , Nucleosomas
18.
Int J Biochem Cell Biol ; 41(1): 108-16, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18775506

RESUMEN

Gene inactivation studies of mammalian histone and DNA-modifying proteins have demonstrated a role for many such proteins in embryonic development. Post-implantation embryonic lethality implies a role for epigenetic factors in differentiation and in development of specific lineages or tissues. However a handful of chromatin-modifying enzymes have been found to be required in pre- or peri-implantation embryos. This is significant as implantation is the time when inner cell mass cells of the blastocyst exit pluripotency and begin to commit to form the various lineages that will eventually form the adult animal. These observations indicate a critical role for chromatin-modifying proteins in the earliest lineage decisions of mammalian development, and/or in the formation of the first embryonic cell types. Recent work has shown that the two major class I histone deacetylase-containing co-repressor complexes, the NuRD and Sin3 complexes, are both required at peri-implantation stages of mouse development, demonstrating the importance of histone deacetylation in cell fate decisions. Over the past 10 years both genetic and biochemical studies have revealed surprisingly divergent roles for these two co-repressors in mammalian cells. In this review we will summarise the evidence that the two major class I histone deacetylase complexes in mammalian cells, the NuRD and Sin3 complexes, play important roles in distinct aspects of embryonic development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Desarrollo Embrionario/genética , Histona Desacetilasas/genética , Humanos , Mamíferos/embriología , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Ratones , Modelos Biológicos , Complejo Correpresor Histona Desacetilasa y Sin3 , Células Madre/citología , Células Madre/metabolismo , Transcripción Genética
19.
Mol Cell Biol ; 26(1): 199-208, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16354691

RESUMEN

Kaiso is a BTB domain protein that associates with the signaling molecule p120-catenin and binds to the methylated sequence mCGmCG or the nonmethylated sequence CTGCNA to modulate transcription. In Xenopus laevis, xKaiso deficiency leads to embryonic death accompanied by premature gene activation in blastulae and upregulation of the xWnt11 gene. Kaiso has also been proposed to play an essential role in mammalian synapse-specific transcription. We disrupted the Kaiso gene in mice to assess its role in mammalian development. Kaiso-null mice were viable and fertile, with no detectable abnormalities of development or gene expression. However, when crossed with tumor-susceptible Apc(Min/+) mice, Kaiso-null mice showed a delayed onset of intestinal tumorigenesis. Kaiso was found to be upregulated in murine intestinal tumors and is expressed in human colon cancers. Our data suggest that Kaiso plays a role in intestinal cancer and may therefore represent a potential target for therapeutic intervention.


Asunto(s)
Neoplasias Intestinales/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Marcación de Gen , Neoplasias Intestinales/metabolismo , Ratones , Ratones Mutantes , Neuronas/citología , Fenotipo , Activación Transcripcional , Regulación hacia Arriba
20.
Nat Protoc ; 13(5): 1034-1061, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29674753

RESUMEN

Fluorescence imaging and chromosome conformation capture assays such as Hi-C are key tools for studying genome organization. However, traditionally, they have been carried out independently, making integration of the two types of data difficult to perform. By trapping individual cell nuclei inside a well of a 384-well glass-bottom plate with an agarose pad, we have established a protocol that allows both fluorescence imaging and Hi-C processing to be carried out on the same single cell. The protocol identifies 30,000-100,000 chromosome contacts per single haploid genome in parallel with fluorescence images. Contacts can be used to calculate intact genome structures to better than 100-kb resolution, which can then be directly compared with the images. Preparation of 20 single-cell Hi-C libraries using this protocol takes 5 d of bench work by researchers experienced in molecular biology techniques. Image acquisition and analysis require basic understanding of fluorescence microscopy, and some bioinformatics knowledge is required to run the sequence-processing tools described here.


Asunto(s)
Cromatina/ultraestructura , Cromosomas/ultraestructura , Biología Molecular/métodos , Conformación Molecular , Células Madre Embrionarias de Ratones , Imagen Óptica/métodos , Animales , Células Cultivadas , Imagenología Tridimensional/métodos , Ratones , Análisis de la Célula Individual/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA