Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 463(7277): 98-102, 2010 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20054397

RESUMEN

The ability to silence the activity of genetically specified neurons in a temporally precise fashion would provide the opportunity to investigate the causal role of specific cell classes in neural computations, behaviours and pathologies. Here we show that members of the class of light-driven outward proton pumps can mediate powerful, safe, multiple-colour silencing of neural activity. The gene archaerhodopsin-3 (Arch) from Halorubrum sodomense enables near-100% silencing of neurons in the awake brain when virally expressed in the mouse cortex and illuminated with yellow light. Arch mediates currents of several hundred picoamps at low light powers, and supports neural silencing currents approaching 900 pA at light powers easily achievable in vivo. Furthermore, Arch spontaneously recovers from light-dependent inactivation, unlike light-driven chloride pumps that enter long-lasting inactive states in response to light. These properties of Arch are appropriate to mediate the optical silencing of significant brain volumes over behaviourally relevant timescales. Arch function in neurons is well tolerated because pH excursions created by Arch illumination are minimized by self-limiting mechanisms to levels comparable to those mediated by channelrhodopsins or natural spike firing. To highlight how proton pump ecological and genomic diversity may support new innovation, we show that the blue-green light-drivable proton pump from the fungus Leptosphaeria maculans (Mac) can, when expressed in neurons, enable neural silencing by blue light, thus enabling alongside other developed reagents the potential for independent silencing of two neural populations by blue versus red light. Light-driven proton pumps thus represent a high-performance and extremely versatile class of 'optogenetic' voltage and ion modulator, which will broadly enable new neuroscientific, biological, neurological and psychiatric investigations.


Asunto(s)
Ingeniería Genética/métodos , Neuronas/metabolismo , Neuronas/efectos de la radiación , Bombas de Protones/metabolismo , Bombas de Protones/efectos de la radiación , Potenciales de Acción/efectos de la radiación , Animales , Ascomicetos/metabolismo , Ascomicetos/efectos de la radiación , Color , Conductividad Eléctrica , Euryarchaeota/metabolismo , Euryarchaeota/efectos de la radiación , Concentración de Iones de Hidrógeno , Ratones , Datos de Secuencia Molecular , Neocórtex/citología , Neocórtex/fisiología , Neocórtex/efectos de la radiación , Bombas de Protones/clasificación , Bombas de Protones/genética , Rodopsinas Microbianas/antagonistas & inhibidores , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efectos de la radiación , Vigilia
2.
Proc SPIE Int Soc Opt Eng ; 6854: 68540H, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18458792

RESUMEN

Many neural disorders are associated with aberrant activity in specific cell types or neural projection pathways embedded within the densely-wired, heterogeneous matter of the brain. An ideal therapy would permit correction of activity just in specific target neurons, while leaving other neurons unaltered. Recently our lab revealed that the naturally-occurring light-activated proteins channelrhodopsin-2 (ChR2) and halorhodopsin (Halo/NpHR) can, when genetically expressed in neurons, enable them to be safely, precisely, and reversibly activated and silenced by pulses of blue and yellow light, respectively. We here describe the ability to make specific neurons in the brain light-sensitive, using a viral approach. We also reveal the design and construction of a scalable, fully-implantable optical prosthetic capable of delivering light of appropriate intensity and wavelength to targeted neurons at arbitrary 3-D locations within the brain, enabling activation and silencing of specific neuron types at multiple locations. Finally, we demonstrate control of neural activity in the cortex of the non-human primate, a key step in the translation of such technology for human clinical use. Systems for optical targeting of specific neural circuit elements may enable a new generation of high-precision therapies for brain disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA