Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Am Chem Soc ; 145(11): 6079-6086, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36855832

RESUMEN

Amorphous noble metals with high surface areas have attracted significant interest as heterogeneous catalysts due to the numerous dangling bonds and abundant unsaturated surface atoms created by the amorphous phase. However, synthesizing amorphous noble metals with high surface areas remains a significant challenge due to strong isotropic metallic bonds. This paper describes the first example of a mesoporous amorphous noble metal alloy [iridium-tellurium (IrTe)] obtained using a micelle-directed synthesis method. The resulting mesoporous amorphous IrTe electrocatalyst exhibits excellent performance in the electrochemical N2 reduction reaction. The ammonia yield rate is 34.6 µg mg-1 h-1 with a Faradaic efficiency of 11.2% at -0.15 V versus reversible hydrogen electrode in 0.1 M HCl solution, outperforming comparable crystalline and Ir metal counterparts. The interconnected porous scaffold and amorphous nature of the alloy create a complementary effect that simultaneously enhances N2 absorption and suppresses the hydrogen evolution reaction. According to theoretical simulations, incorporating Te in the IrTe alloy effectively strengthens the adsorption of N2 and lowers the Gibbs free energy for the rate-limiting step of the electrocatalytic N2 reduction reaction. Mesoporous chemistry enables a new route to achieve high-performance amorphous metalloid alloys with properties that facilitate the selective electrocatalytic reduction of N2.

2.
Angew Chem Int Ed Engl ; 62(46): e202307615, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37485623

RESUMEN

Reactions occurring at surfaces and interfaces necessitate the creation of well-designed surface and interfacial structures. To achieve a combination of bulk material (i.e., framework) and void spaces, a meticulous process of "nano-architecting" of the available space is necessary. Conventional porous materials such as mesoporous silica, zeolites, and metal-organic frameworks lack advanced cooperative functionalities owing to their largely monotonous pore geometries and limited conductivities. To overcome these limitations and develop functional structures with surface-specific functions, the novel materials space-tectonics methodology has been proposed for future materials synthesis. This review summarizes recent examples of materials synthesis based on designing building blocks (i.e., tectons) and their hybridization, along with practical guidelines for implementing materials syntheses and state-of-the-art examples of practical applications. Lastly, the potential integration of materials space-tectonics with emerging technologies, such as materials informatics, is discussed.

3.
Small ; 18(5): e2104507, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34821033

RESUMEN

As a typical battery-type material, CuCo2 S4 is a promising candidate for supercapacitors due to the high theoretical specific capacity. However, its practical application is plagued by inherently sluggish ion diffusion kinetics and inferior electrical transport properties. Herein, sulfur vacancies are incorporated in CuCo2 S4 hollow nanoarchitectures (HNs) to accelerate redox reactivity. Experimental analyses and theoretical investigations uncover that the generated sulfur vacancies increase the active electron states, reduce the adsorption barriers of electrolyte ions, and enrich reactive redox species, thus achieving enhanced electrochemical performance. Consequently, the deficient CuCo2 S4 with optimized vacancy concentration presents a high specific capacity of 231 mAh g-1 at 1 A g-1 , a ≈1.78 times increase compared to that of pristine CuCo2 S4 , and exhibits a superior rate capability (73.8% capacity retention at 20 A g-1 ). Furthermore, flexible solid-state asymmetric supercapacitor devices assembled with the deficient CuCo2 S4 HNs and VN nanosheets deliver a high energy density of 61.4 W h kg-1 at 750 W kg-1 . Under different bending states, the devices display exceptional mechanical flexibility with no obvious change in CV curves at 50 mV s-1 . These findings provide insights for regulating electrode reactivity of battery-type materials through intentional nanoarchitectonics and vacancy engineering.

4.
Opt Express ; 30(15): 27730-27745, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236938

RESUMEN

The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show how transient absorption spectroscopy (TAS) can be used to rapidly and accurately quantify the vast ensemble of shapes of Au NPs in solution within minutes, including the synthesized nanorods, decahedra, and nanospheres. Colloidal solutions containing Au NPs were measured in TAS and their localized surface plasmon resonance (LSPR) modes were classified according to the shape, wavelength and number of peaks. Then their excited-state relaxation dynamics were used to ascertain their electron-phonon (e-ph) coupling time constant and frequency of optomechanical modes. TAS can quickly show that an Au nanosphere sample contains a tiny fraction of Au nanorods, whereas steady-state absorbance is totally blind to the presence of nanorods. Additionally, the TAS experiments indicate that the characteristic e-ph coupling time constants in Au nanorods depend on the NPs dimensions at high excitation intensity (> 6 µJ/cm2) which can help identify if there are any elongated Au NPs in Au spheres samples. Finally, optomechanical oscillations formed by NPs breathing modes were observed, providing information related to the average size and monodispersity of Au nanospheres and nanorods.

5.
Nano Lett ; 21(14): 6064-6070, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34240608

RESUMEN

Numerous laboratories have observed random lasing from optically pumped solutions of plasmonic nanoparticles (NPs) suspended with organic dye molecules. The underlying mechanism is typically attributed to the formation of closed-loop optical cavities enabled by the large local field and scattering enhancements in the vicinity of plasmonic NPs. In this manuscript, we propose an alternative mechanism that does not directly require the plasmon resonance. We used high-speed confocal microspectroscopy to observe the photophysical dynamics of NPs in solution. Laser pulses induce the formation of microbubbles that surround and encapsulate the NPs, then sharp peaks <1.0 nm are observed that match the spectral signature of random lasing. Electromagnetic simulations indicate that ensembles of microbubbles may form optical corral containing standing wave patterns that are sufficient to sustain coherent optical feedback in a gain medium. Collectively, these results show that ensembles of plasmonic-induced bubbles can generate optical feedback and random lasing.


Asunto(s)
Microburbujas , Nanopartículas , Rayos Láser , Luz
6.
Sci Technol Adv Mater ; 22(1): 141-149, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33889057

RESUMEN

Bixbyite α -Mn2O3 is an inexpensive Earth-abundant mineral that can be used to drive both oxygen evolution (OER) and oxygen reduction reactions (ORR) in alkaline conditions. It possesses a subtle orthorhombic → cubic phase change near room temperature that suppresses Jahn-Teller distortions and presents a unique opportunity to study how atomic structure affects the electronic structure and catalytic activity at a temperature range that is easily accessible in OER/ORR experiments. Previously, we observed that heat-treated α -Mn2O3 had a better performance as a bifunctional catalyst in the oxygen evolution (OER) and oxygen reduction reactions (ORR) (Dalton Trans. 2016, 45, 18,494-18,501). We hypothesized that heat-treatment pinned the material into a more electrochemically active cubic phase. In this manuscript, we use high-resolution X-ray diffraction to collect the temperature-dependent structures of α -Mn2O3, and then input them into ab initio calculations. The electronic structure calculations indicate that the orthorhombic → cubic phase transition causes the Mn 3d and O 2p bands to overlap and mix covalently, transforming α -Mn2O3 from a semiconductor to a semimetal. This subtle change in structure also modifies Mn-O-Mn bond distances, which may improve the activity of the material in oxygen electrochemistry. OER and ORR experiments were performed using the same electrode at various temperatures. They show a jump in the exchange current density near the phase change temperature, demonstrating the higher activity of the cubic phase.

7.
Small ; 16(35): e2002489, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32767535

RESUMEN

The electrochemical synthesis of mesoporous ruthenium (Ru) films using sacrificial self-assembled block polymer micelles templates, and its electrochemical surface oxidation to RuOx is described. Unlike standard methods such as thermal oxidation, the electrochemical oxidation method described here retains the mesoporous structure. Ru oxide materials serve as high-performance supercapacitor electrodes due to their excellent pseudocapacitive behavior. The mesoporous architectured film shows superior specific capacitance (467 F g-1Ru ) versus a nonporous Ru/RuOx electrode (28 F g-1Ru ) that is prepared via the same method but omitting the pore-directing polymer. Ultrahigh surface area materials will play an essential role in increasing the capacitance of this class of energy storage devices because the pseudocapacitive redox reaction occurs on the surface of electrodes.

8.
Small ; 16(10): e1906707, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32022431

RESUMEN

Selective hydrogenation of nitriles is an industrially relevant synthetic route for the preparation of primary amines. Amorphous metal-boron alloys have a tunable, glass-like structure that generates a high concentration of unsaturated metal surface atoms that serve as active sites in hydrogenation reactions. Here, a method to create nanoparticles composed of mesoporous 3D networks of amorphous nickel-boron (Ni-B) alloy is reported. The hydrogenation of benzyl cyanide to ß-phenylethylamine is used as a model reaction to assess catalytic performance. The mesoporous Ni-B alloy spheres have a turnover frequency value of 11.6 h-1 , which outperforms non-porous Ni-B spheres with the same composition. The bottom-up synthesis of mesoporous transition metal-metalloid alloys expands the possible reactions that these metal architectures can perform while simultaneously incorporating more Earth-abundant catalysts.

9.
Opt Express ; 28(21): 31923-31931, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115156

RESUMEN

We show how photoexcitation of a single plasmonic nanoparticle (NP) in solution can create a whispering-gallery-mode (WGM) droplet resonator. Small nano/microbubbles are initially formed by laser-induced heating that is localized by the plasmon resonance. Fast imaging shows that the bubbles collect and condense around the NP and form a droplet in the interior of the bubble. Droplets containing dye generated lasing modes with wavelengths that depend on the size of the droplet, refractive index of the solvent, and surrounding environment, matching the behavior of a WGM. We demonstrated this phenomenon with two kinds of Au NPs in addition to TiN NPs and observed cavity diameters as small as 4.8 µm with a free spectral range (FSR) of 12 nm. These results indicate that optical pumping of plasmonic NPs in a gain medium can generate lasing modes that are not directly associated with the plasmon cavity but can arise from its photophysical processes. This process may serve as a method to generate plasmonic/photonic optical microcavities in solution on demand at any location in a solvent using free-space coupling in/out of the cavity.

10.
Phys Chem Chem Phys ; 22(3): 1416-1421, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31859295

RESUMEN

Plasmonic metal nanostructures support intense nanoscale electromagnetic hotspots that can be modulated in an active plasmonic device. Electrical manipulation is a reversible route to manipulate plasmon resonances in sub-nanoscale distances because a bias voltage can modify the electron tunneling barrier. In this manuscript, we use time-dependent density functional theory (TDDFT) to examine the impact of quantum effects on an asymmetric nanoparticle dimer composed of an aluminum (Al) nanoparticle on a much larger Al rectangular cuboid. This asymmetric system is intended to model some of the effects of a metal nanoparticle coupling to a metal film which is a prototypical plasmonic antenna structure. As the distance between the asymmetric dimer shrinks, the dipolar gap plasmon (DGP) redshifts and a charge transfer plasmon (CTP) appears that is influenced by optically-induced conductance in the nanoscale junction. The relatively high optical conductivity of Al enables a smooth transition from capacitive to conductive coupling, allowing us to find the DGP-CTP crossover distance (d ∼ 6 Å). Surprisingly, a closer evaluation of crossover plasmon resonance revealed two separate peaks with near-field distributions that match the CTP and anti-bonding mode of the gap plasmon. Applying an electrical bias to this crossover system modifies the effective conductance of the tunneling barrier, making it possible to reversibly tune the wavelength of the plasmon modes. This work demonstrates how asymmetry becomes a key feature in active plasmonic devices using electrical bias, because asymmetry enables the use of positive and negative biases to tune the system over a broader range of wavelengths.

11.
Nano Lett ; 19(5): 3379-3385, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30974058

RESUMEN

Mesoporous colloidal nanospheres with tailorable asymmetric nanostructures and multimetallic elemental compositions are building blocks in next-generation heterogeneous catalysts. Introducing structural asymmetry into metallic mesoporous frameworks has never been demonstrated, but it would be beneficial because the asymmetry enables the spatial control of catalytic interfaces, facilitates the electron/mass transfer and assists in the removal of poisonous intermediates. Herein, we describe a simple bottom-up strategy to generate uniform sub-100 nm multimetallic asymmetric bowl-shaped mesoporous nanospheres (BMSs). This method uses a surfactant-directed "dual"-template to control the kinetics of metal reduction on the surface of a vesicle, forming mesoporous metal islands on its surface whose spherical cone angle can be precisely controlled. The asymmetric BMS mesostructures with different spherical cone angles (structural asymmetries) and elemental compositions are demonstrated. The high surface area and asymmetric nature of the metal surfaces are shown to enhance catalytic performance in the alcohol oxidation reactions. The findings described here offer novel and interesting opportunities for rational design and synthesis of hierarchically asymmetric nanostructures with desired functions for a wide range of applications.

12.
Opt Express ; 27(14): 19168-19176, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31503680

RESUMEN

We experimentally determined the dispersion of the complex third-order nonlinear optical susceptibility χ(3) of Au nanorods over a wide bandwidth (370 - 800 nm). Compared to bulk Au, these nanorods exhibit greatly enhanced nonlinearities that can be manipulated by geometrical parameters. Accurately measuring the χ(3) values of nanostructured metals is challenging because χ(3) is strongly influenced by the local field effects. Hence the current published χ(3) values for Au nanorods have huge variations in both magnitude and sign because Z-scan measurements are used almost exclusively. This work combines pump-probe methods with spectroscopic ellipsometry to show that Au nanorods exhibit strong wavelength dependence and enhanced χ(3) in the vicinity of the longitudinal plasmon mode and explains where the regions of SA and RSA exist and how focusing and defocusing affects χ(3). In this context, the results highlight the importance of the dispersion of the quantity χ(3) to design plasmonic platforms for nanophotonics applications.

13.
Chemistry ; 25(1): 343-348, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30426579

RESUMEN

A simple, scalable route for the generation of mesoporous Rh particles by chemical reduction on self-assembled block-copolymer micelle templates was reported recently (Nat. Commun. 2017, 8, 15581). Here, this concept is extended to generate mesoporous PtCu alloy nanoparticles through the same approach. The PtCu alloy particles possess high-surface-area nanoporous architectures and good chemical stability for applications in catalysis. Both the composition and diameter of the bimetallic PtCu nanoparticles can be controlled by adjusting the amount of precursor in the reaction, which affects the electrochemical properties of the material. The combination of the mesoporous structure with the synergistic bimetallic electronic effects of PtCu gives rise to enhanced activity for the catalytic oxidation of methanol compared with commercial Pt black.

14.
J Am Chem Soc ; 140(39): 12434-12441, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30129750

RESUMEN

Two-dimensional (2D) metals are an emerging class of nanostructures that have attracted enormous research interest due to their unusual electronic and thermal transport properties. Adding mesopores in the plane of ultrathin 2D metals is the next big step in manipulating these structures because increasing their surface area improves the utilization of the material and the availability of active sites. Here, we report a novel synthetic strategy to prepare an unprecedented type of 2D mesoporous metallic iridium (Ir) nanosheet. Mesoporous Ir nanosheets can be synthesized with close-packed assemblies of diblock copolymer (poly-(ethylene oxide)- b-polystyrene, PEO- b-PS) micelles aligned in the 2D plane of the nanosheets. This novel synthetic route opens a new dimension of control in the synthesis of 2D metals, enabling new kinds of mesoporous architectures with abundant catalytically active sites. Because of their unique structural features, the mesoporous metallic Ir nanosheets exhibit a high electrocatalytic activity toward the oxygen evolution reaction (OER) in acidic solution as compared to commercially available catalysts.

15.
Small ; 14(27): e1702054, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29845726

RESUMEN

An approach to assemble hierarchically ordered 3D arrangements of curved graphenic nanofragments for energy storage devices is described. Assembling them into well-defined interconnected macroporous networks, followed by removal of the template, results in spherical macroporous, mesoporous, and microporous carbon microball (3MCM) architectures with controllable features spanning nanometer to micrometer length scales. These structures are ideal porous electrodes and can serve as lithium-ion battery (LIB) anodes as well as capacitive deionization (CDI) devices. The LIBs exhibit high reversible capacity (up to 1335 mAh g-1 ), with great rate capability (248 mAh g-1 at 20 C) and a long cycle life (60 cycles). For CDI, the curved graphenic networks have superior electrosorption capacity (i.e., 5.17 mg g-1 in 0.5 × 10-3 m NaCl) over conventional carbon materials. The performance of these materials is attributed to the hierarchical structure of the graphenic electrode, which enables faster ion diffusion and low transport resistance.

16.
Chemistry ; 24(23): 6127-6132, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29624740

RESUMEN

Mesoporous carbon can be synthesized with good control of surface area, pore-size distribution, and porous architecture. Although the relationship between porosity and supercapacitor performance is well known, there are no thorough reports that compare the performance of numerous types of carbon samples side by side. In this manuscript, we describe the performance of 13 porous carbon samples in supercapacitor devices. We suggest that there is a "critical pore size" at which guest molecules can pass through the pores effectively. In this context, the specific surface area (SSA) and pore-size distribution (PSD) are used to show the point at which the pore size crosses the threshold of critical size. These measurements provide a guide for the development of new kinds of carbon materials for supercapacitor devices.

17.
Inorg Chem ; 57(10): 6045-6050, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29722531

RESUMEN

Efficient collection and safe disposal of toxic metals ions from aqueous solutions is critical for applications in environmental remediation. Although extensive efforts have been devoted to the synthesis of functional TiO2 materials, photocatalytic reduction (photoreduction) of aqueous metal ions into solid metals remains a challenge. We designed a TiO2 nanoparticle-decorated layered titanate (K2Ti4O9) material that retained the cation exchange ability of K2Ti4O9 but also possessed the enhanced charge separation efficiency of K2Ti4O9. Combining cation exchange with enhanced charge separation efficiency results in a heterostructured material with remarkably high activity for the photoreduction of metal ions. Initially we demonstrated how the photocatalyst can efficiently reduce aqueous Ni2+ cations, whereas the benchmark TiO2-based P25 catalyst showed little to no activity. The resulting Ni-deposited heterostructure can then be used as a catalyst for visible light-induced photocatalytic H2 evolution in water.

18.
Angew Chem Int Ed Engl ; 57(29): 8881-8885, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29901830

RESUMEN

Creating CsPbBr3 perovskite nanocrystals with bright blue emission is challenging because their optical properties depend sensitively on structure. Growing perovskites in mesoporous templates bypasses some of these purification issues because the size of the nanocrystal is governed by the dimensions of the pores. Mesoporous silica consisting of aligned channels with tunable diameter can be easily synthesized and used as a template. When the perovskite solution evaporates and retreats, some of the liquid remains trapped in the interconnecting pores by discontinuous dewetting. The precursor crystallizes, generating stable ca. 3.1 nm blue-emitting perovskite nanocrystals. The mesoporous template also serves as a protective barrier to preserve the optical properties of the CsPbBr3 from atmospheric conditions. Compared to the bulk crystals and the powder composite, the strong blue-shift of the emission peak in the film is accompanied by a decrease in the longer lifetime component and an 8-fold increase in the external quantum efficiency.

19.
Angew Chem Int Ed Engl ; 57(20): 5848-5852, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29656420

RESUMEN

The redox units of polyaniline (PAni) are used cooperatively, and in situ, to assemble ruthenium (Ru) nanoclusters in a hierarchically ordered carbon electrode. The oxidized quinonoid imine (QI) units in PAni bond Ru complex ions selectively, whereas reduced benzenoid amine (BA) units cannot. By electrochemically tuning the ratio of QI to BA, Ru complexes are spatially confined in the outer layer of hierarchical PAni frameworks. Carbonization of Ru-PAni hybrids induces nucleation on the outer surface of the carbon support, generating nearly monodisperse Ru nanoclusters. The optimized catalyst has a low loading of approximately 2 wt % Ru, but exhibits a mass activity for the hydrogen evolution reaction that is about 6.8 times better than commercial 20 wt % Pt/C catalyst.

20.
J Am Chem Soc ; 138(42): 13874-13881, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27667498

RESUMEN

Hybrid organic-inorganic metal halide perovskites have fascinating electronic properties and have already been implemented in various devices. Although the behavior of bulk metal halide perovskites has been widely studied, the properties of perovskite nanocrystals are less well-understood because synthesizing them is still very challenging, in part because of stability. Here we demonstrate a simple and versatile method to grow monodisperse CH3NH3PbBrxIx-3 perovskite nanocrystals inside mesoporous silica templates. The size of the nanocrystal is governed by the pore size of the templates (3.3, 3.7, 4.2, 6.2, and 7.1 nm). In-depth structural analysis shows that the nanocrystals maintain the perovskite crystal structure, but it is slightly distorted. Quantum confinement was observed by tuning the size of the particles via the template. This approach provides an additional route to tune the optical bandgap of the nanocrystal. The level of quantum confinement was modeled taking into account the dimensions of the rod-shaped nanocrystals and their close packing inside the channels of the template. Photoluminescence measurements on CH3NH3PbBr clearly show a shift from green to blue as the pore size is decreased. Synthesizing perovskite nanostructures in templates improves their stability and enables tunable electronic properties via quantum confinement. These structures may be useful as reference materials for comparison with other perovskites, or as functional materials in all solid-state light-emitting diodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA