Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 21(2): 353-360, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191933

RESUMEN

The structural plasticity of synapses is crucial for regulating brain functions. However, currently available methods for studying synapse organization based on split fluorescent proteins (FPs) have been limited in assessing synaptic dynamics in vivo due to the irreversible binding of split FPs. Here, we develop 'SynapShot', a method for visualizing the structural dynamics of intact synapses by combining dimerization-dependent FPs (ddFPs) with engineered synaptic adhesion molecules. SynapShot allows real-time monitoring of reversible and bidirectional changes of synaptic contacts under physiological stimulation. The application of green and red ddFPs in SynapShot enables simultaneous visualization of two distinct populations of synapses. Notably, the red-shifted SynapShot is highly compatible with blue light-based optogenetic techniques, allowing for visualization of synaptic dynamics while precisely controlling specific signaling pathways. Furthermore, we demonstrate that SynapShot enables real-time monitoring of structural changes in synaptic contacts in the mouse brain during both primitive and higher-order behaviors.


Asunto(s)
Neuronas , Sinapsis , Animales , Ratones , Sinapsis/fisiología , Neuronas/fisiología , Transducción de Señal , Células Cultivadas , Colorantes , Plasticidad Neuronal
2.
Mol Ther ; 31(5): 1480-1495, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36932674

RESUMEN

Optogenetic techniques permit non-invasive, spatiotemporal, and reversible modulation of cellular activities. Here, we report a novel optogenetic regulatory system for insulin secretion in human pluripotent stem cell (hPSC)-derived pancreatic islet-like organoids using monSTIM1 (monster-opto-Stromal interaction molecule 1), an ultra-light-sensitive OptoSTIM1 variant. The monSTIM1 transgene was incorporated at the AAVS1 locus in human embryonic stem cells (hESCs) by CRISPR-Cas9-mediated genome editing. Not only were we able to elicit light-induced intracellular Ca2+ concentration ([Ca2+]i) transients from the resulting homozygous monSTIM1+/+-hESCs, but we also successfully differentiated them into pancreatic islet-like organoids (PIOs). Upon light stimulation, the ß-cells in these monSTIM1+/+-PIOs displayed reversible and reproducible [Ca2+]i transient dynamics. Furthermore, in response to photoexcitation, they secreted human insulin. Light-responsive insulin secretion was similarly observed in monSTIM1+/+-PIOs produced from neonatal diabetes (ND) patient-derived induced pluripotent stem cells (iPSCs). Under LED illumination, monSTIM1+/+-PIO-transplanted diabetic mice produced human c-peptide. Collectively, we developed a cellular model for the optogenetic control of insulin secretion using hPSCs, with the potential to be applied to the amelioration of hyperglycemic disorders.


Asunto(s)
Diabetes Mellitus Experimental , Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Islotes Pancreáticos , Células Madre Pluripotentes , Humanos , Ratones , Animales , Secreción de Insulina , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Islotes Pancreáticos/metabolismo , Células Madre Pluripotentes/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Organoides , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular
3.
Mol Ther ; 31(6): 1675-1687, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-36945774

RESUMEN

CRISPR-Cas13-mediated viral genome targeting is a novel strategy for defending against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Here, we generated mRNA-encoded Cas13b targeting the open reading frame 1b (ORF1b) region to effectively degrade the RNA-dependent RNA polymerase gene. Of the 12 designed CRISPR RNAs (crRNAs), those targeting the pseudoknot site upstream of ORF1b were found to be the most effective in suppressing SARS-CoV-2 propagation. Pseudoknot-targeting Cas13b reduced expression of the spike protein and attenuated viral replication by 99%. It also inhibited the replication of multiple SARS-CoV-2 variants, exhibiting broad potency. We validated the therapeutic efficacy of this system in SARS-CoV-2-infected hACE2 transgenic mice, demonstrating that crRNA treatment significantly reduced viral titers. Our findings suggest that the pseudoknot region is a strategic site for targeted genomic degradation of SARS-CoV-2. Hence, pseudoknot-targeting Cas13b could be a breakthrough therapy for overcoming infections by SARS-CoV-2 or other RNA viruses.


Asunto(s)
COVID-19 , Animales , Ratones , SARS-CoV-2/genética , Replicación Viral , ARN Viral/genética , ARN Viral/metabolismo
4.
J Neurosci ; 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35863892

RESUMEN

The PFC is thought to be the region where remote memory is recalled. However, the neurotrophic receptors that underlie the remote memory remain largely unknown. Here, we benefited from auto-assembly split Cre to accomplish the neural projection-specific recombinase activity without spontaneous leakage. Deletion of tropomyosin receptor kinase B (TrkB) in neurons projecting from the medial entorhinal cortex to the mPFC displayed reduced remote memory recall from the male mice, but the recent recall was intact. We found that the TrkB deletion attenuates the participation of mPFC cells in the remote fear memory recall. The disruption of remote recall was attributed to reduced reactivation of cells in the mPFC. Notably, TrkB deletion seriously inhibited experience-dependent maturation of oligodendroglia in the PFC, resulting in defects in remote recall that were rescued by clemastine administration. Together, our data suggest that TrkB in intercortical circuits functions in remote memory consolidation.Significance StatementRetrieving the past experiences or events is essential for the ones to lead life. The investigations performed in the rodent model have disclosed that the systems consolidation of memory accompanying changes of cortical circuits and transcriptome is required for maintaining the memory for a long time. In this study, the split Cre with TrkBflox/flox mice were subjected to discover that TrkB in the neurons plays a role in remote memory consolidation. We evaluated the contextual fear memory and labeled cells, which revealed deletion of TrkB interrupts newborn oligodendrocyte and reactivation of cells in mPFC at remote recall. Our data provide the implication that remote memory is relevant to neurotrophic receptor signaling as well as its influence on non-neuronal cells.

5.
J Cell Sci ; 134(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34013963

RESUMEN

The intracellular lifestyle represents a challenge for the rapidly proliferating liver stage Plasmodium parasite. In order to scavenge host resources, Plasmodium has evolved the ability to target and manipulate host cell organelles. Using dynamic fluorescence-based imaging, we here show an interplay between the pre-erythrocytic stages of Plasmodium berghei and the host cell Golgi during liver stage development. Liver stage schizonts fragment the host cell Golgi into miniaturized stacks, which increases surface interactions with the parasitophorous vacuolar membrane of the parasite. Expression of specific dominant-negative Arf1 and Rab GTPases, which interfere with the host cell Golgi-linked vesicular machinery, results in developmental delay and diminished survival of liver stage parasites. Moreover, functional Rab11a is critical for the ability of the parasites to induce Golgi fragmentation. Altogether, we demonstrate that the structural integrity of the host cell Golgi and Golgi-associated vesicular traffic is important for optimal pre-erythrocytic development of P. berghei. The parasite hijacks the Golgi structure of the hepatocyte to optimize its own intracellular development. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Malaria , Parásitos , Animales , Hepatocitos , Hígado , Plasmodium berghei , Proteínas Protozoarias
6.
Nat Methods ; 16(11): 1095-1100, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31611691

RESUMEN

Intracellular antibodies have become powerful tools for imaging, modulating and neutralizing endogenous target proteins. Here, we describe an optogenetically activated intracellular antibody (optobody) consisting of split antibody fragments and blue-light inducible heterodimerization domains. We expanded this optobody platform by generating several optobodies from previously developed intracellular antibodies, and demonstrated that photoactivation of gelsolin and ß2-adrenergic receptor (ß2AR) optobodies suppressed endogenous gelsolin activity and ß2AR signaling, respectively.


Asunto(s)
Anticuerpos/fisiología , Gelsolina/fisiología , Optogenética , Receptores Adrenérgicos beta 2/fisiología , Animales , Células Cultivadas , Humanos
7.
Mol Psychiatry ; 26(10): 5542-5556, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33452442

RESUMEN

Proteinopathy in neurodegenerative diseases is typically characterized by deteriorating activity of specific protein aggregates. In tauopathies, including Alzheimer's disease (AD), tau protein abnormally accumulates and induces dysfunction of the affected neurons. Despite active identification of tau modifications responsible for tau aggregation, a critical modulator inducing tau proteinopathy by affecting its protein degradation flux is not known. Here, we report that anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase, is crucial for the tau-mediated AD pathology. ALK caused abnormal accumulation of highly phosphorylated tau in the somatodendritic region of neurons through its tyrosine kinase activity. ALK-induced LC3-positive axon swelling and loss of spine density, leading to tau-dependent neuronal degeneration. Notably, ALK activation in neurons impaired Stx17-dependent autophagosome maturation and this defect was reversed by a dominant-negative Grb2. In a Drosophila melanogaster model, transgenic flies neuronally expressing active Drosophila Alk exhibited the aggravated tau rough eye phenotype with retinal degeneration and shortened lifespan. In contrast, expression of kinase-dead Alk blocked these phenotypes. Consistent with the previous RNAseq analysis showing upregulation of ALK expression in AD [1], ALK levels were significantly elevated in the brains of AD patients showing autophagosomal defects. Injection of an ALK.Fc-lentivirus exacerbated memory impairment in 3xTg-AD mice. Conversely, pharmacologic inhibition of ALK activity with inhibitors reversed the memory impairment and tau accumulation in both 3xTg-AD and tauC3 (caspase-cleaved tau) transgenic mice. Together, we propose that aberrantly activated ALK is a bona fide mediator of tau proteinopathy that disrupts autophagosome maturation and causes tau accumulation and aggregation, leading to neuronal dysfunction in AD.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Enfermedad de Alzheimer/genética , Quinasa de Linfoma Anaplásico/genética , Animales , Drosophila melanogaster , Humanos , Ratones , Ratones Transgénicos , Tauopatías/genética , Proteínas tau/genética
8.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142154

RESUMEN

The activation of tropomyosin receptor kinase B (TrkB), the receptor of brain-derived neurotrophic factor (BDNF), plays a key role in induced juvenile-like plasticity (iPlasticity), which allows restructuring of neural networks in adulthood. Optically activatable TrkB (optoTrkB) can temporarily and spatially evoke iPlasticity, and recently, optoTrkB (E281A) was developed as a variant that is highly sensitive to light stimulation while having lower basal activity compared to the original optoTrkB. In this study, we validate optoTrkB (E281A) activated in alpha calcium/calmodulin-dependent protein kinase type II positive (CKII+) pyramidal neurons or parvalbumin-positive (PV+) interneurons in the mouse visual cortex by immunohistochemistry. OptoTrkB (E281A) was activated in PV+ interneurons and CKII+ pyramidal neurons with blue light (488 nm) through the intact skull and fur, and through a transparent skull, respectively. LED light stimulation significantly increased the intensity of phosphorylated ERK and CREB even through intact skull and fur. These findings indicate that the highly sensitive optoTrkB (E281A) can be used in iPlasticity studies of both inhibitory and excitatory neurons, with flexible stimulation protocols in behavioural studies.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Corteza Visual , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio , Ratones , Neuronas/metabolismo , Parvalbúminas/metabolismo , Receptor trkB/metabolismo , Tropomiosina/metabolismo , Corteza Visual/metabolismo
9.
Biochem Biophys Res Commun ; 527(2): 331-336, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31948753

RESUMEN

Intracellular signaling forms complicated networks that involve dynamic alterations of the protein-protein interactions occurring inside a cell. To dissect these complex networks, light-inducible optogenetic technologies have offered a novel approach for modulating the function of intracellular machineries in space and time. Optogenetic approaches combine genetic and optical methods to initiate and control protein functions within live cells. In this review, we provide an overview of the optical strategies that can be used to manipulate intracellular signaling proteins and secondary messengers at the molecular level. We briefly address how an optogenetic actuator can be engineered to enhance homo- or hetero-interactions, survey various optical tools and targeting strategies for controlling cell-signaling pathways, examine their extension to in vivo systems and discuss the future prospects for the field.


Asunto(s)
Optogenética/métodos , Proteínas/metabolismo , Transducción de Señal , Animales , Humanos , Células Fotorreceptoras/metabolismo , Proteínas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Sistemas de Mensajero Secundario
10.
Biochem Biophys Res Commun ; 523(2): 473-480, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31882118

RESUMEN

The inducible activation system is valuable for investigating spatiotemporal roles of molecules. A chemically inducible activation system for Fas (CD95/APO-1), which works efficiently to induce apoptosis and leads non-apoptotic pathways, has not yet been developed. Here, we engineered a rapamycin-induced dimerization system of Fas consisting of FKBP and FRB proteins. Treatment of rapamycin specifically induces cellular apoptosis. In neurons and cells with high c-FLIP expression, rapamycin-induced Fas activation triggered the activation of the non-apoptotic pathway components instead of cell death. Intracranial delivery of the system could be utilized to induce apoptosis of tumor cells upon rapamycin treatment. Our results demonstrate a novel inducible Fas activation system which operates with high efficiency and temporal precision in vitro and in vivo promising a potential therapeutic strategy.


Asunto(s)
Ingeniería de Proteínas/métodos , Sirolimus/farmacología , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Receptor fas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Células Cultivadas , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Ratones Endogámicos C57BL , Neuronas/metabolismo , Embarazo , Ratas Sprague-Dawley , Proteína 1A de Unión a Tacrolimus/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Receptor fas/genética
11.
Neuroendocrinology ; 110(11-12): 1010-1027, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31935735

RESUMEN

INTRODUCTION: Synchronous and pulsatile neural activation of kisspeptin neurons in the arcuate nucleus (ARN) are important components of the gonadotropin-releasing hormone pulse generator, the final common pathway for central regulation of mammalian reproduction. However, whether ARN kisspeptin neurons can intrinsically generate self-sustained synchronous oscillations from the early neonatal period and how they are regulated remain unclear. OBJECTIVE: This study aimed to examine the endogenous rhythmicity of ARN kisspeptin neurons and its neural regulation using a neonatal organotypic slice culture model. METHODS: We monitored calcium (Ca2+) dynamics in real-time from individual ARN kisspeptin neurons in neonatal organotypic explant cultures of Kiss1-IRES-Cre mice transduced with genetically encoded Ca2+ indicators. Pharmacological approaches were employed to determine the regulations of kisspeptin neuron-specific Ca2+ oscillations. A chemogenetic approach was utilized to assess the contribution of ARN kisspeptin neurons to the population dynamics. RESULTS: ARN kisspeptin neurons in neonatal organotypic cultures exhibited a robust synchronized Ca2+ oscillation with a period of approximately 3 min. Kisspeptin neuron-specific Ca2+ oscillations were dependent on voltage-gated sodium channels and regulated by endoplasmic reticulum-dependent Ca2+ homeostasis. Chemogenetic inhibition of kisspeptin neurons abolished synchronous Ca2+ oscillations, but the autocrine actions of the neuropeptides were marginally effective. Finally, neonatal ARN kisspeptin neurons were regulated by N-methyl-D-aspartate and gamma-aminobutyric acid receptor-mediated neurotransmission. CONCLUSION: These data demonstrate that ARN kisspeptin neurons in organotypic cultures can generate synchronized and self-sustained Ca2+ oscillations. These oscillations controlled by multiple regulators within the ARN are a novel ultradian rhythm generator that is active during the early neonatal period.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Señalización del Calcio/fisiología , Kisspeptinas , Neuronas/fisiología , Ritmo Ultradiano/fisiología , Animales , Animales Recién Nacidos , Ratones , Ratones Transgénicos
12.
Mol Cell ; 47(2): 281-90, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22683270

RESUMEN

Phosphoinositide 3-kinases (PI3Ks) and Ras and Rho family small GTPases are key regulators of cell polarization, motility, and chemotaxis. They influence each other's activities by direct and indirect feedback processes that are only partially understood. Here, we show that 21 small GTPase homologs activate PI3K. Using a microscopy-based binding assay, we show that K-Ras, H-Ras, and five homologous Ras family small GTPases function upstream of PI3K by directly binding the PI3K catalytic subunit, p110. In contrast, several Rho family small GTPases activated PI3K by an indirect cooperative positive feedback that required a combination of Rac, CDC42, and RhoG small GTPase activities. Thus, a distributed network of Ras and Rho family small GTPases induces and reinforces PI3K activity, explaining past challenges to elucidate the specific relevance of different small GTPases in regulating PI3K and controlling cell polarization and chemotaxis.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas ras/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Dominio Catalítico , Movimiento Celular , Polaridad Celular , Quimiotaxis , Activación Enzimática , Humanos , Ratones , Modelos Biológicos , Células 3T3 NIH , Estructura Terciaria de Proteína , Transducción de Señal , Factores de Tiempo , Proteína de Unión al GTP cdc42/metabolismo
13.
Cell Microbiol ; 20(10): e12938, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30010242

RESUMEN

Salmonella uses Type 3 secretion systems (T3SSs) to deliver virulence factors, called effectors, into host cells during infection. The T3SS effectors promote invasion into host cells and the generation of a replicative niche. SopB is a T3SS effector that plays an important role in Salmonella pathogenesis through its lipid phosphatase activity. Here, we show that SopB mediates the recruitment of Rho GTPases (RhoB, RhoD, RhoH, and RhoJ) to bacterial invasion sites. RhoJ contributes to Salmonella invasion, and RhoB and RhoH play an important role in Akt activation. R-Ras1 also contributes to SopB-dependent Akt activation by promoting the localised production of PI(3,4)P2 /PI(3,4,5)P3 . Our studies reveal new signalling factors involved in SopB-dependent Salmonella infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Salmonella/patología , Salmonella typhimurium/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Línea Celular Tumoral , Células HeLa , Interacciones Huésped-Patógeno/fisiología , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Infecciones por Salmonella/microbiología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Factores de Virulencia/metabolismo , Proteína de Unión al GTP rhoB/metabolismo
14.
Biotechnol Bioeng ; 116(5): 1006-1016, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30636290

RESUMEN

Acidic Golgi pH plays an important role in protein glycosylation, one of the critical quality attributes of therapeutic proteins. To determine the intracellular Golgi pH during culture, stable Chinese hamster ovary (CHO) cell clones expressing pHluorin2, a ratiometric pH-sensitive fluorescent protein (FP), in the cis- and trans-Golgi, were constructed by fusing pHluorin2 with specific targeting proteins, acetylglucosaminyltransferase, and a galactosyltransferase, respectively. Stable CHO cell clones expressing pHluorin2 in the cytoplasm were also constructed. The subcellular localization of FPs was confirmed by immunofluorescence analysis. Live-cell imaging revealed that the intracellular pH (pHi) of clones expressing the ratiometric pH-sensitive FPs converged to a specific pH range (cis-Golgi: 6.4-6.5; trans-Golgi: 5.9-6.0; and cytoplasm: 7.1-7.2). The pHi was successfully evaluated in various culture conditions. Although culture pH was maintained at 7.2 in a bioreactor, the Golgi pH increased with culture time. Elevated ammonia concentration and osmolality were partially responsible for the increased Golgi pH during bioreactor cultures. Taken together, the application of ratiometric pH-sensitive FPs in monitoring the Golgi pH of CHO cells during culture provides a new perspective to improve protein glycosylation through pHi control.


Asunto(s)
Reactores Biológicos , Aparato de Golgi/metabolismo , Proteínas Luminiscentes/biosíntesis , Animales , Células CHO , Cricetinae , Cricetulus , Glicosilación , Concentración de Iones de Hidrógeno , Transporte de Proteínas , Proteínas Recombinantes/biosíntesis
15.
Proc Natl Acad Sci U S A ; 113(21): 5952-7, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27190091

RESUMEN

Cell migration is controlled by various Ca(2+) signals. Local Ca(2+) signals, in particular, have been identified as versatile modulators of cell migration because of their spatiotemporal diversity. However, little is known about how local Ca(2+) signals coordinate between the front and rear regions in directionally migrating cells. Here, we elucidate the spatial role of local Ca(2+) signals in directed cell migration through combinatorial application of an optogenetic toolkit. An optically guided cell migration approach revealed the existence of Ca(2+) sparklets mediated by L-type voltage-dependent Ca(2+) channels in the rear part of migrating cells. Notably, we found that this locally concentrated Ca(2+) influx acts as an essential transducer in establishing a global front-to-rear increasing Ca(2+) gradient. This asymmetrical Ca(2+) gradient is crucial for maintaining front-rear morphological polarity by restricting spontaneous lamellipodia formation in the rear part of migrating cells. Collectively, our findings demonstrate a clear link between local Ca(2+) sparklets and front-rear coordination during directed cell migration.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Movimiento Celular/fisiología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Optogenética/métodos , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos
16.
Proc Natl Acad Sci U S A ; 113(36): 10091-6, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27555588

RESUMEN

Cells migrate by directing Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) activities and by polymerizing actin toward the leading edge of the cell. Previous studies have proposed that this polarization process requires a local positive feedback in the leading edge involving Rac small GTPase and actin polymerization with PI3K likely playing a coordinating role. Here, we show that the pleckstrin homology and RhoGEF domain containing G3 (PLEKHG3) is a PI3K-regulated Rho guanine nucleotide exchange factor (RhoGEF) for Rac1 and Cdc42 that selectively binds to newly polymerized actin at the leading edge of migrating fibroblasts. Optogenetic inactivation of PLEKHG3 showed that PLEKHG3 is indispensable both for inducing and for maintaining cell polarity. By selectively binding to newly polymerized actin, PLEKHG3 promotes local Rac1/Cdc42 activation to induce more local actin polymerization, which in turn promotes the recruitment of more PLEKHG3 to induce and maintain cell front. Thus, autocatalytic reinforcement of PLEKHG3 localization to the leading edge of the cell provides a molecular basis for the proposed positive feedback loop that is required for cell polarization and directed migration.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/genética , Movimiento Celular/genética , Fibroblastos/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Citoesqueleto de Actina/ultraestructura , Actinas/metabolismo , Animales , Línea Celular , Polaridad Celular , Retroalimentación Fisiológica , Fibroblastos/citología , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ratones , Células 3T3 NIH , Neuropéptidos/genética , Neuropéptidos/metabolismo , Optogenética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Polimerizacion , Unión Proteica , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
17.
Nat Chem Biol ; 12(6): 431-6, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27065232

RESUMEN

Intracellular membrane trafficking, which is involved in diverse cellular processes, is dynamic and difficult to study in a spatiotemporal manner. Here we report an optogenetic strategy, termed light-activated reversible inhibition by assembled trap of intracellular membranes (IM-LARIAT), that uses various Rab GTPases combined with blue-light-induced hetero-interaction between cryptochrome 2 and CIB1. In this system, illumination induces a rapid and reversible intracellular membrane aggregation that disrupts the dynamics and functions of the targeted membrane. We applied IM-LARIAT to specifically perturb several Rab-mediated trafficking processes, including receptor transport, protein sorting and secretion, and signaling initiated from endosomes. We finally used this tool to reveal different functions of local Rab5-mediated and Rab11-mediated membrane trafficking in growth cones and soma of young hippocampal neurons. Our results show that IM-LARIAT is a versatile tool that can be used to dissect spatiotemporal functions of intracellular membranes in diverse systems.


Asunto(s)
Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Optogenética/métodos , Multimerización de Proteína/efectos de la radiación , Proteínas de Unión al GTP rab/metabolismo , Animales , Células COS , Chlorocebus aethiops , Conos de Crecimiento/metabolismo , Conos de Crecimiento/efectos de la radiación , Hipocampo/citología , Transporte de Proteínas/efectos de la radiación
18.
J Neurosci ; 36(17): 4816-31, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27122038

RESUMEN

UNLABELLED: Neurotrophin-3 (NT-3) is a secreted neurotrophic factor that binds neurotrophin receptor tyrosine kinase C (TrkC), which in turn binds to presynaptic protein tyrosine phosphatase σ (PTPσ) to govern excitatory synapse development. However, whether and how NT-3 cooperates with the TrkC-PTPσ synaptic adhesion pathway and TrkC-mediated intracellular signaling pathways in rat cultured neurons has remained unclear. Here, we report that NT-3 enhances TrkC binding affinity for PTPσ. Strikingly, NT-3 treatment bidirectionally regulates the synaptogenic activity of TrkC: at concentrations of 10-25 ng/ml, NT-3 further enhanced the increase in synapse density induced by TrkC overexpression, whereas at higher concentrations, NT-3 abrogated TrkC-induced increases in synapse density. Semiquantitative immunoblotting and optogenetics-based imaging showed that 25 ng/ml NT-3 or light stimulation at a power that produced a comparable level of NT-3 (6.25 µW) activated only extracellular signal-regulated kinase (ERK) and Akt, whereas 100 ng/ml NT-3 (light intensity, 25 µW) further triggered the activation of phospholipase C-γ1 and CREB independently of PTPσ. Notably, disruption of TrkC intracellular signaling pathways, extracellular ligand binding, or kinase activity by point mutations compromised TrkC-induced increases in synapse density. Furthermore, only sparse, but not global, TrkC knock-down in cultured rat neurons significantly decreased synapse density, suggesting that intercellular differences in TrkC expression level are critical for its synapse-promoting action. Together, our data demonstrate that NT-3 is a key factor in excitatory synapse development that may direct higher-order assembly of the TrkC/PTPσ complex and activate distinct intracellular signaling cascades in a concentration-dependent manner to promote competition-based synapse development processes. SIGNIFICANCE STATEMENT: In this study, we present several lines of experimental evidences to support the conclusion that neurotrophin-3 (NT-3) modulates the synaptic adhesion pathway involving neurotrophin receptor tyrosine kinase C (TrkC) and presynaptic protein tyrosine phosphatase σ (PTPσ) in a bidirectional manner at excitatory synapses. NT-3 acts in concentration-independent manner to facilitate TrkC-mediated presynaptic differentiation, whereas it acts in a concentration-dependent manner to exert differential effects on TrkC-mediated organization of postsynaptic development. We further investigated TrkC extracellular ligand binding, intracellular signaling pathways, and kinase activity in NT-3-induced synapse development. Last, we found that interneuronal differences in TrkC levels regulate the synapse number. Overall, these results suggest that NT-3 functions as a positive modulator of synaptogenesis involving TrkC and PTPσ.


Asunto(s)
Neurotrofina 3/metabolismo , Receptor trkC/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Sinapsis/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipocampo , Neuronas/fisiología , Unión Proteica , Ratas , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Transducción de Señal/efectos de los fármacos , Sinapsis/fisiología
19.
Nat Methods ; 11(6): 633-6, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24793453

RESUMEN

We present a versatile platform to inactivate proteins in living cells using light, light-activated reversible inhibition by assembled trap (LARIAT), which sequesters target proteins into complexes formed by multimeric proteins and a blue light-mediated heterodimerization module. Using LARIAT, we inhibited diverse proteins that modulate cytoskeleton, lipid signaling and cell cycle with high spatiotemporal resolution. Use of single-domain antibodies extends the method to target proteins containing specific epitopes, including GFP.


Asunto(s)
Luz , Optogenética , Proteínas/metabolismo , Proteínas Fluorescentes Verdes/química , Células HeLa , Humanos , Imagen Óptica
20.
J Virol ; 90(16): 7159-70, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27226379

RESUMEN

UNLABELLED: The release of infectious hepatitis C virus (HCV) particles from infected cells remains poorly characterized. We previously demonstrated that virus release is dependent on the endosomal sorting complex required for transport (ESCRT). Here, we show a critical role of trans-Golgi network (TGN)-endosome trafficking during the assembly, but principally the secretion, of infectious virus. This was demonstrated by both small interfering RNA (siRNA)-mediated silencing of TGN-associated adaptor proteins and a panel of dominant negative (DN) Rab GTPases involved in TGN-endosome trafficking steps. Importantly, interfering with factors critical for HCV release did not have a concomitant effect on secretion of triglycerides, ApoB, or ApoE, indicating that particles are likely released from Huh7 cells via pathways distinct from that of very-low-density lipoprotein (VLDL). Finally, we show that HCV NS2 perturbs TGN architecture, redistributing TGN membranes to closely associate with HCV core protein residing on lipid droplets. These findings support the notion that HCV hijacks TGN-endosome trafficking to facilitate particle assembly and release. Moreover, although essential for assembly and infectivity, the trafficking of mature virions is seemingly independent of host lipoproteins. IMPORTANCE: The mechanisms by which infectious hepatitis C virus particles are assembled and released from the cell are poorly understood. We show that the virus subverts host cell trafficking pathways to effect the release of virus particles and disrupts the structure of the Golgi apparatus, a key cellular organelle involved in secretion. In addition, we demonstrate that the mechanisms used by the virus to exit the cell are distinct from those used by the cell to release lipoproteins, suggesting that the virus effects a unique modification to cellular trafficking pathways.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Endosomas/metabolismo , Hepatitis C/metabolismo , Lipoproteínas VLDL/metabolismo , Neoplasias Hepáticas/metabolismo , Liberación del Virus/fisiología , Red trans-Golgi/metabolismo , Transporte Biológico , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , Endosomas/genética , Endosomas/virología , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Aparato de Golgi/virología , Hepacivirus/fisiología , Hepatitis C/genética , Hepatitis C/virología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Microscopía Fluorescente , Vesículas Secretoras/metabolismo , Virión/metabolismo , Replicación Viral , Red trans-Golgi/genética , Red trans-Golgi/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA