Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biomech Eng ; 146(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37831143

RESUMEN

Mechanical circulatory support (MCS) device therapy is one of the primary treatment options for end-stage heart failure (HF), whereby a mechanical pump is integrated with the failing heart to maintain adequate tissue perfusion. The ISO 14708-5:2020 standard prescribes generic guidelines for nonclinical device evaluation and system performance testing of MCS devices using a mock circulatory loop (MCL). However, the utility of MCLs in premarket regulatory submissions of MCS devices is ambiguous, and the specific disease states that the device is intended to treat are not usually simulated. Hence, we aim to outline the potential of MCLs as a valuable regulatory science tool for characterizing MCS device systems by adequately representing target clinical-use HF conditions on the bench. Target pathophysiologic hemodynamics of HF conditions (i.e., cardiogenic shock (CS), left ventricular (LV) hypertrophy secondary to hypertension, and coronary artery disease), along with a healthy adult at rest and a healthy adult during exercise are provided as recommended test conditions. The conditions are characterized based on LV, aorta, and left atrium pressures using recommended cardiac hemodynamic indices such as systolic, diastolic, and mean arterial pressure, mean cardiac output (CO), cardiac cycle time, and systemic vascular resistance. This study is a first step toward standardizing MCLs to generate well-defined target HF conditions used to evaluate MCS devices.


Asunto(s)
Sistema Cardiovascular , Insuficiencia Cardíaca , Corazón Auxiliar , Humanos , Adulto , Hemodinámica/fisiología , Corazón , Insuficiencia Cardíaca/terapia
2.
Artif Organs ; 41(2): 175-178, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27087363

RESUMEN

Bench-top in vitro hemolysis testing is a fundamental tool during the design and regulatory safety evaluation of blood-contacting medical devices. While multiple published experimental protocols exist, descriptions of the test loop reservoir remain ambiguous. A critical fixture within the circuit, there is no readily available blood reservoir that ensures thorough mixing and complete air evacuation: two major factors which can affect results. As part of the Food and Drug Administration (FDA) Critical Path Initiative, we developed a three-piece reservoir consisting of a 3D-printed base, a plastic clamp set, and a medical-grade blood bag. This simple, reusable, and cost-effective design was used successfully in the hemolysis assessment of FDA benchmark nozzles and prototype rotary blood pumps, and may be useful as an integral component to any in vitro blood circulation loop.


Asunto(s)
Circulación Asistida/efectos adversos , Puente Cardiopulmonar/efectos adversos , Eritrocitos/patología , Hemólisis , Circulación Asistida/instrumentación , Puente Cardiopulmonar/instrumentación , Diseño de Equipo , Pruebas Hematológicas/instrumentación , Humanos , Hidrodinámica
3.
Artif Organs ; 39(3): 237-48, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25180887

RESUMEN

Multilaboratory in vitro blood damage testing was performed on a simple nozzle model to determine how different flow parameters and blood properties affect device-induced hemolysis and to generate data for comparison with computational fluid dynamics-based predictions of blood damage as part of an FDA initiative for assessing medical device safety. Three independent laboratories evaluated hemolysis as a function of nozzle entrance geometry, flow rate, and blood properties. Bovine blood anticoagulated with acid citrate dextrose solution (2-80 h post-draw) was recirculated through nozzle-containing and paired nozzle-free control loops for 2 h. Controlled parameters included hematocrit (36 ± 1.5%), temperature (25 °C), blood volume, flow rate, and pressure. Three nozzle test conditions were evaluated (n = 26-36 trials each): (i) sudden contraction at the entrance with a blood flow rate of 5 L/min, (ii) gradual cone at the entrance with a 6-L/min blood flow rate, and (iii) sudden-contraction inlet at 6 L/min. The blood damage caused only by the nozzle model was calculated by subtracting the hemolysis generated by the paired control loop test. Despite high intralaboratory variability, significant differences among the three test conditions were observed, with the sharp nozzle entrance causing the most hemolysis. Modified index of hemolysis (MIHnozzle ) values were 0.292 ± 0.249, 0.021 ± 0.128, and 1.239 ± 0.667 for conditions i-iii, respectively. Porcine blood generated hemolysis results similar to those obtained with bovine blood. Although the interlaboratory hemolysis results are only applicable for the specific blood parameters and nozzle model used here, these empirical data may help to advance computational fluid dynamics models for predicting blood damage.


Asunto(s)
Benchmarking , Simulación por Computador , Hemólisis/fisiología , Hemorreología/fisiología , Hidrodinámica , Laboratorios , Animales , Velocidad del Flujo Sanguíneo , Bovinos , Diseño de Equipo , Modelos Lineales , Modelos Teóricos , Juego de Reactivos para Diagnóstico , Porcinos , Estados Unidos , United States Food and Drug Administration
4.
Lab Chip ; 24(7): 1867-1874, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38487919

RESUMEN

Microfluidic lab-on-a-chip technologies enable the analysis and manipulation of small fluid volumes and particles at small scales and the control of fluid flow and transport processes at the microscale, leading to the development of new methods to address a broad range of scientific and medical challenges. Microfluidic and lab-on-a-chip technologies have made a noteworthy impact in basic, preclinical, and clinical research, especially in hematology and vascular biology due to the inherent ability of microfluidics to mimic physiologic flow conditions in blood vessels and capillaries. With the potential to significantly impact translational research and clinical diagnostics, technical issues and incentive mismatches have stymied microfluidics from fulfilling this promise. We describe how accessibility, usability, and manufacturability of microfluidic technologies should be improved and how a shift in mindset and incentives within the field is also needed to address these issues. In this report, we discuss the state of the microfluidic field regarding current limitations and propose future directions and new approaches for the field to advance microfluidic technologies closer to translation and clinical use. While our report focuses on using blood as the prototypical biofluid sample, the proposed ideas and research directions can be extrapolated to other areas of hematology, oncology, biology, and medicine.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Técnicas Analíticas Microfluídicas/métodos , Dispositivos Laboratorio en un Chip , Investigación Biomédica Traslacional
5.
ASAIO J ; 69(12): e502-e512, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37923315

RESUMEN

The objectives of this study are to characterize the hemodynamics of cardiogenic shock (CS) through a computational model validated using a mock circulatory loop (MCL) and to perform sensitivity analysis and uncertainty propagation studies after the American Society of Mechanical Engineers (ASME) Validation and Verification (V&V) guidelines. The uncertainties in cardiac cycle time ( ), total resistance ( ), and total volume ( ) were quantified in the MCL and propagated in the computational model. Both models were used to quantify the pressure in the left atrium, aorta (Ao), and left ventricle (LV), along with the flow through the aortic valve, reaching a good agreement. The results suggest that 1) is the main source of uncertainty in the variables under study, 2) showed its greatest impact on the uncertainty of Ao hemodynamics, and 3) mostly affected the uncertainty of LV pressure and Ao flow at the late-systolic phase. Comparison of uncertainty levels in the computational and experimental results was used to infer the presence of additional contributing factors that were not captured and propagated during a first analysis. Future work will expand upon this study to analyze the impact of mechanical circulatory support devices, such as ventricular assist devices, under CS conditions.


Asunto(s)
Corazón Auxiliar , Choque Cardiogénico , Humanos , Hemodinámica , Ventrículos Cardíacos , Simulación por Computador
6.
Comput Biol Med ; 160: 106979, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37167657

RESUMEN

Pulse contour cardiac output monitoring systems allow real-time and continuous estimation of hemodynamic variables such as cardiac output (CO) and stroke volume variation (SVV) by analysis of arterial blood pressure waveforms. However, evaluating the performance of CO monitoring systems to measure the small variations in these variables sometimes used to guide fluid therapy is a challenge due to limitations in clinical reference methods. We developed a non-clinical database as a tool for assessing the dynamic attributes of pressure-based CO monitoring systems, including CO response time and CO and SVV resolutions. We developed a mock circulation loop (MCL) that can simulate rapid changes in different parameters, such as CO and SVV. The MCL was configured to simulate three different states (normovolemic, cardiogenic shock, and hyperdynamic) representing a range of flow and pressure conditions. For each state, we simulated stepwise changes in the MCL flow and collected datasets for characterizing pressure-based CO systems. Nine datasets were generated that contain hours of peripheral pressure, central flow and pressure waveforms. The MCL-generated database is provided open access as a tool for evaluating dynamic characteristics of pressure-based CO algorithms and systems in detecting variations in CO and SVV indices. In an example application of the database, a CO response time of 10 s, CO and SVV resolutions with lower and upper limits of (-9.1%, 8.4%) and (-5.0%, 3.8%), respectively, were determined for a pressure-based CO benchtop system. This tool will support a more comprehensive assessment of pressure-based CO monitoring systems and algorithms.


Asunto(s)
Hemodinámica , Respiración Artificial , Presión Sanguínea/fisiología , Gasto Cardíaco/fisiología , Fluidoterapia/métodos , Monitoreo Fisiológico/métodos , Respiración Artificial/métodos , Volumen Sistólico/fisiología , Humanos
7.
Ann Biomed Eng ; 51(1): 253-269, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36401112

RESUMEN

Computational fluid dynamics (CFD) is widely used to simulate blood-contacting medical devices. To be relied upon to inform high-risk decision making, however, model credibility should be demonstrated through validation. To provide robust data sets for validation, researchers at the FDA and collaborators developed two benchmark medical device flow models: a nozzle and a centrifugal blood pump. Experimental measurements of the flow fields and hemolysis were acquired using each model. Concurrently, separate open interlaboratory CFD studies were performed in which participants from around the world, who were blinded to the measurements, submitted CFD predictions of each benchmark model. In this study, we report the results of the interlaboratory CFD study of the FDA benchmark blood pump. We analyze the results of 24 CFD submissions using a wide range of different flow solvers, methods, and modeling parameters. To assess the accuracy of the CFD predictions, we compare the results with experimental measurements of three quantities of interest (pressure head, velocity field, and hemolysis) at different pump operating conditions. We also investigate the influence of different CFD methods and modeling choices used by the participants. Our analyses reveal that, while a number of CFD submissions accurately predicted the pump performance for individual cases, no single participant was able to accurately predict all quantities of interest across all conditions. Several participants accurately predicted the pressure head at all conditions and the velocity field in all but one or two cases. Only one of the eight participants who submitted hemolysis results accurately predicted absolute plasma free hemoglobin levels at a majority of the conditions, though most participants were successful at predicting relative hemolysis levels between conditions. Overall, this study highlights the need to validate CFD modeling of rotary blood pumps across the entire range of operating conditions and for all quantities of interest, as some operating conditions and regions (e.g., the pump diffuser) are more challenging to accurately predict than others. All quantities of interest should be validated because, as shown here, it is possible to accurately predict hemolysis despite having relatively inaccurate predictions of the flow field.


Asunto(s)
Corazón Auxiliar , Humanos , Simulación por Computador , Hidrodinámica , Benchmarking , Hemólisis
8.
Front Bioeng Biotechnol ; 10: 958582, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159671

RESUMEN

The miniaturization of laboratory procedures for Lab-on-Chip (LoC) devices and translation to various platforms such as single cell analysis or Organ-on-Chip (OoC) systems are revolutionizing the life sciences and biomedical fields. As a result, microfluidics is becoming a viable technology for improving the quality and sensitivity of critical processes. Yet, standard test methods have not yet been established to validate basic manufacturing steps, performance, and safety of microfluidic devices. The successful development and widespread use of microfluidic technologies are greatly dependent on the community's success in establishing widely supported test protocols. A key area that requires consensus guidelines is leakage testing. There are unique challenges in preventing and detecting leaks in microfluidic systems because of their small dimensions, high surface-area to volume ratios, low flow rates, limited volumes, and relatively high-pressure differentials over short distances. Also, microfluidic devices often employ heterogenous components, including unique connectors and fluid-contacting materials, which potentially make them more susceptible to mechanical integrity failures. The differences between microfluidic systems and traditional macroscale technologies can exacerbate the impact of a leak on the performance and safety on the microscale. To support the microfluidics community efforts in product development and commercialization, it is critical to identify common aspects of leakage in microfluidic devices and standardize the corresponding safety and performance metrics. There is a need for quantitative metrics to provide quality assurance during or after the manufacturing process. It is also necessary to implement application-specific test methods to effectively characterize leakage in microfluidic systems. In this review, different methods for assessing microfluidics leaks, the benefits of using different test media and materials, and the utility of leakage testing throughout the product life cycle are discussed. Current leakage testing protocols and standard test methods that can be leveraged for characterizing leaks in microfluidic devices and potential classification strategies are also discussed. We hope that this review article will stimulate more discussions around the development of gas and liquid leakage test standards in academia and industry to facilitate device commercialization in the emerging field of microfluidics.

9.
J Heart Valve Dis ; 18(5): 535-45, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20099695

RESUMEN

BACKGROUND AND AIM OF THE STUDY: One significant problem encountered during surgery to implant mechanical heart valve prostheses is the propensity for thrombus formation near the valve leaflet and housing. This may be caused by the high shear stresses present in the leakage jet flows through small gaps between leaflets and the valve housing during the valve closure phase. METHODS: A two-dimensional (2D) study was undertaken to demonstrate that design changes in bileaflet mechanical valves result in notable changes in the flow-induced stresses and prediction of platelet activation. A Cartesian grid technique was used for the 2D simulation of blood flow through two models of bileaflet mechanical valves, and their flow patterns, closure characteristics and platelet activation potential were compared. A local mesh refinement algorithm allowed efficient and fast flow computations with mesh adaptation based on the gradients of the flow field in the gap between the leaflet and housing at the instant of valve closure. Leaflet motion was calculated dynamically, based on the fluid forces acting on it. Platelets were modeled and tracked as point particles by a Lagrangian particle tracking method which incorporated the hemodynamic forces on the particles. RESULTS: A comparison of results showed that the velocity, wall shear stress and simulated platelet activation parameter were lower in the valve model, with a smaller angle of leaflet traverse between the fully open to the fully closed position. The parameters were also affected to a lesser extent by local changes in the leaflet and housing geometry. CONCLUSION: Computational simulations can be used to examine local design changes to help minimize the fluid-induced stresses that may play a key role in thrombus initiation with the implanted mechanical valves.


Asunto(s)
Prótesis Valvulares Cardíacas , Hemorreología , Prótesis Valvulares Cardíacas/efectos adversos , Hemodinámica , Humanos , Ensayo de Materiales , Modelos Cardiovasculares , Activación Plaquetaria , Diseño de Prótesis , Flujo Sanguíneo Regional , Estrés Mecánico , Trombosis/etiología , Trombosis/prevención & control
10.
Biomech Model Mechanobiol ; 18(4): 1005-1030, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30815758

RESUMEN

Most stress-based hemolysis models used in computational fluid dynamics (CFD) are based on an empirical power law correlation between hemolysis generation and the flow-induced stress and exposure time. Empirical model coefficients are typically determined by fitting global hemolysis measurements in simplified blood shearing devices under uniform shear conditions and with well-defined exposure times. CFD simulations using these idealized global empirical coefficients are then performed to predict hemolysis in a medical device with complex hemodynamics. The applicability, however, of this traditional approach of using idealized coefficients for a real device with varying exposure times and non-uniform shear is currently unknown. In this study, we propose a new approach for determining device- and species-specific hemolysis power law coefficients (C, a, and b). The approach consists of calculating multiple hemolysis solutions using different sets of coefficients to map the hemolysis response field in three-dimensional (C, a, b) parameter space. The resultant response field is then compared with experimental data in the same device to determine the coefficients that when incorporated into the locally defined power law model yield correct global hemolysis predictions. We first develop the generalized approach by deriving analytical solutions for simple uniform and non-uniform shear flows (planar Couette flow and circular Poiseuille flow, respectively) that allow us to continuously map the hemolysis solution in (C, a, b) parameter space. We then extend our approach to more practical cases relevant to blood-contacting medical devices by replacing the requirement for an analytical solution in our generalized approach with CFD and Kriging surrogate modeling. Finally, we apply our verified CFD-based Kriging surrogate modeling approach to predict the device- and species-specific power law coefficients for developing laminar flow in a small capillary tube. We show that the resultant coefficients are much different than traditional idealized coefficients obtained from simplified uniform shear experiments and that using such idealized coefficients yields a highly inaccurate prediction of hemolysis that is in error by more than 2000% compared to experiments. Our approach and surrogate modeling framework may be applied to more complex medical devices and readily extended to determine empirical coefficients for other continuum-based models of hemolysis and other forms of flow-induced blood damage (e.g., platelet activation and thrombosis).


Asunto(s)
Corazón Auxiliar , Hemólisis/fisiología , Hidrodinámica , Modelos Cardiovasculares , Algoritmos , Animales , Bovinos
11.
Cardiovasc Eng Technol ; 9(4): 623-640, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30291585

RESUMEN

PURPOSE: A credible computational fluid dynamics (CFD) model can play a meaningful role in evaluating the safety and performance of medical devices. A key step towards establishing model credibility is to first validate CFD models with benchmark experimental datasets to minimize model-form errors before applying the credibility assessment process to more complex medical devices. However, validation studies to establish benchmark datasets can be cost prohibitive and difficult to perform. The goal of this initiative sponsored by the U.S. Food and Drug Administration is to generate validation data for a simplified centrifugal pump that mimics blood flow characteristics commonly observed in ventricular assist devices. METHODS: The centrifugal blood pump model was made from clear acrylic and included an impeller, with four equally spaced, straight blades, supported by mechanical bearings. Particle Image Velocimetry (PIV) measurements were performed at several locations throughout the pump by three independent laboratories. A standard protocol was developed for the experiments to ensure that the flow conditions were comparable and to minimize systematic errors during PIV image acquisition and processing. Velocity fields were extracted at the pump entrance, blade passage area, back gap region, and at the outlet diffuser regions. A Newtonian blood analog fluid composed of sodium iodide, glycerin, and water was used as the working fluid. Velocity measurements were made for six different pump flow conditions, with the blood-equivalent flow rate ranging between 2.5 and 7 L/min for pump speeds of 2500 and 3500 rpm. RESULTS: Mean intra- and inter-laboratory variabilities in velocity were ~ 10% at the majority of the measurement locations inside the pump. However, the inter-laboratory variability increased to more than ~ 30% in the exit diffuser region. The variability between the three laboratories for the peak velocity magnitude in the diffuser region ranged from 5 to 25%. The bulk velocity field near the impeller changed proportionally with the rotational speed but was relatively unaffected by the pump flow rate. In contrast, flow in the exit diffuser region was sensitive to both the flow rate and the rotational speed. Specifically, at 3500 rpm, the exit jet tilted toward the inner wall of the diffuser at a flow rate of 2.5 L/min, but the jet tilted towards the outer wall when the flow rate was 7 L/min. CONCLUSIONS: Inter-laboratory experimental mean velocity data (and the corresponding variance) were obtained for the FDA pump model and are available for download at https://nciphub.org/wiki/FDA_CFD . Experimental datasets from the inter-laboratory characterization of benchmark flow models, including the blood pump model presented herein and our previous nozzle model, can be used for validating future CFD studies and to collaboratively develop guidelines on best practices for verification, validation, uncertainty quantification, and credibility assessment of CFD simulations in the evaluation of medical devices (e.g. ASME V&V 40 standards working group).


Asunto(s)
Simulación por Computador , Insuficiencia Cardíaca/terapia , Corazón Auxiliar , Hemodinámica , Ensayos de Aptitud de Laboratorios/normas , Ensayo de Materiales/normas , Modelos Cardiovasculares , Función Ventricular , Benchmarking , Velocidad del Flujo Sanguíneo , Aprobación de Recursos , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/fisiopatología , Humanos , Hidrodinámica , Diseño de Prótesis , Flujo Pulsátil , Reproducibilidad de los Resultados , Reología , Estados Unidos , United States Food and Drug Administration
12.
Blood Press Monit ; 23(5): 225-229, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29771693

RESUMEN

OBJECTIVES: Automated oscillometric blood pressure (BP) monitors can be critical health assessment tools if they are accurate and can provide repeatable and reproducible readings. Commercial patient simulators are capable of screening for poorly performing oscillometric BP monitors. A valid screening bench test method to identify unreliable and underperforming BP monitors could advance surveillance of these devices and support regulatory decision making. METHODS: Two simulators were used to characterize a total of 19 legally marketed upper arm, wrist, hospital-grade, and public-use BP monitors. These oscillometric BP monitors were tested for repeatability and reproducibility across different simulated patient populations. The metrics for evaluating these devices were the difference between the simulated pressure and the BP monitor output, and the variability from repeated measurements. RESULTS: All but one of the BP monitors tested provided repeatable readings (<3 mmHg). The mean error between the simulated pressure and the BP monitor output was largest for the wrist devices, whereas hospital-grade BP monitors most closely estimated the target BP waveforms. In general, device error and measurement variability increased at elevated BPs. CONCLUSION: Patient simulators are more suitable for repeatability analysis as opposed to assessing device accuracy. Despite their limitations, patient simulators can be used as effective tools to screen and improve the quality of BP monitors.


Asunto(s)
Automatización , Determinación de la Presión Sanguínea , Monitores de Presión Sanguínea , Simulación de Paciente , Brazo , Presión Sanguínea , Determinación de la Presión Sanguínea/instrumentación , Humanos , Reproducibilidad de los Resultados , Esfigmomanometros , Muñeca
13.
ASAIO J ; 63(2): 150-160, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28114192

RESUMEN

Computational fluid dynamics (CFD) is increasingly being used to develop blood-contacting medical devices. However, the lack of standardized methods for validating CFD simulations and blood damage predictions limits its use in the safety evaluation of devices. Through a U.S. Food and Drug Administration (FDA) initiative, two benchmark models of typical device flow geometries (nozzle and centrifugal blood pump) were tested in multiple laboratories to provide experimental velocities, pressures, and hemolysis data to support CFD validation. In addition, computational simulations were performed by more than 20 independent groups to assess current CFD techniques. The primary goal of this article is to summarize the FDA initiative and to report recent findings from the benchmark blood pump model study. Discrepancies between CFD predicted velocities and those measured using particle image velocimetry most often occurred in regions of flow separation (e.g., downstream of the nozzle throat, and in the pump exit diffuser). For the six pump test conditions, 57% of the CFD predictions of pressure head were within one standard deviation of the mean measured values. Notably, only 37% of all CFD submissions contained hemolysis predictions. This project aided in the development of an FDA Guidance Document on factors to consider when reporting computational studies in medical device regulatory submissions. There is an accompanying podcast available for this article. Please visit the journal's Web site (www.asaiojournal.com) to listen.


Asunto(s)
Benchmarking , Corazón Auxiliar , Hidrodinámica , Humanos , Modelos Teóricos , Reología , Estados Unidos , United States Food and Drug Administration
14.
J Heart Valve Dis ; 14(6): 835-42, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16363068

RESUMEN

BACKGROUND AND AIM OF THE STUDY: Mechanical heart valves (MHVs) are known to induce cavitation during closure and rebound. Cavitation may lead to blood element damage and stable bubble formation, with the latter introducing emboli into the cranial circulation and increasing the risk of stroke. Previous research has suggested that CO2 is the primary blood gas involved in stable bubble growth, due to its high solubility compared to that of oxygen or nitrogen. The primary objective of this study is to determine the role that CO2 plays in MHV-induced cavitation bubble formation. METHODS: Degassed water (5 ppm) was supplemented with CO2 at partial pressures of 0, 40 and 100 mmHg. Cavitation was visualized using high-speed videography for 29 mm Björk-Shiley Monostrut and Medtronic Hall MHVs in the mitral position. Experimental parameters (heart rate, systolic duration, and left ventricular pressure) were adjusted to provide dp/dt values of 500, 2,500 and 4,500 mmHg/s. High-frequency pressure fluctuations of cavitation bubble collapse were detected using a hydrophone. RESULTS: Root-mean square (RMS) values were calculated to quantify the cavitation intensity for both MHVs at the three loading conditions. The images of cavitation bubble formation and collapse were correlated to their respective RMS values. This study revealed no statistical difference between the cavitation intensities produced by either of the MHVs for the range of CO2-supplemented degassed water tested. For example, at the most physiologic loading condition of 2,500 mmHg/s, the RMS values for the Björk-Shiley Monostrut valve in degassed water containing 0 and 100 mmHg CO2 were 32.7 +/- 3.5 and 34.3 +/- 6.1 mmHg, respectively. CONCLUSION: The results of this in-vitro study show that, despite affecting stable bubble growth, the presence and quantity of dissolved CO2 does not affect the intensity of the cavitation events occurring during impact of the valve occluder with its housing. Therefore, the role of CO2 is limited to stable bubble development.


Asunto(s)
Dióxido de Carbono/sangre , Prótesis Valvulares Cardíacas , Hemorreología , Válvula Mitral , Modelos Cardiovasculares , Modelos Estructurales , Presión Parcial , Solubilidad
15.
Med Devices (Auckl) ; 6: 49-57, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23690701

RESUMEN

The purpose of this study was first to evaluate the clot capture efficiency and capture location of six currently-marketed vena cava filters in a physiological venous flow loop, using synthetic polyacrylamide hydrogel clots, which were intended to simulate actual blood clots. After observing a measured anomaly for one of the test filters, we redirected the focus of the study to identify the cause of poor clot capture performance for large synthetic hydrogel clots. We hypothesized that the uncharacteristic low clot capture efficiency observed when testing the outlying filter can be attributed to the inadvertent use of dense, stiff synthetic hydrogel clots, and not as a result of the filter design or filter orientation. To study this issue, sheep blood clots and polyacrylamide (PA) synthetic clots were injected into a mock venous flow loop containing a clinical inferior vena cava (IVC) filter, and their captures were observed. Testing was performed with clots of various diameters (3.2, 4.8, and 6.4 mm), length-to-diameter ratios (1:1, 3:1, 10:1), and stiffness. By adjusting the chemical formulation, PA clots were fabricated to be soft, moderately stiff, or stiff with elastic moduli of 805 ± 2, 1696 ± 10 and 3295 ± 37 Pa, respectively. In comparison, the elastic moduli for freshly prepared sheep blood clots were 1690 ± 360 Pa. The outlying filter had a design that was characterized by peripheral gaps (up to 14 mm) between its wire struts. While a low clot capture rate was observed using large, stiff synthetic clots, the filter effectively captured similarly sized sheep blood clots and soft PA clots. Because the stiffer synthetic clots remained straight when approaching the filter in the IVC model flow loop, they were more likely to pass between the peripheral filter struts, while the softer, physiological clots tended to fold and were captured by the filter. These experiments demonstrated that if synthetic clots are used as a surrogate for animal or human blood clots for in vitro evaluation of vena cava filters, the material properties (eg, elastic modulus) and dynamic behavior of the surrogate should first be assessed to ensure that they accurately mimic an actual blood clot within the body.

16.
J Biomech Eng ; 130(5): 054503, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19045527

RESUMEN

The closing behavior of mechanical heart valves is dependent on the design of the valve and its housing, the valve composition, and the environment in which the valve is placed. One innovative approach for improving the closure dynamics of tilting disk valves is introduced here. We transformed a normal Delrin occluder into one containing a "dynamic liquid core" to resist acceleration and reduce the moment of inertia, closing velocity, and impact forces of the valve during closure. The modified occluder was studied in the mitral position of a simulation chamber under the physiologic and elevated closing conditions of 2500 mm Hg/s and 4500 mm Hg/s, respectively. Cavitation energy, detected as high-frequency pressure transients with a hydrophone, was the measure used to compare the modified valve with its unaltered counterpart. The cavitation potential of tilting disk valves is indicative of the extent of blood damage occurring during valve closure. Initial findings suggest that changes to the structure or physical properties of well established mechanical valves, such as the one described here, can reduce closure induced hemolysis by minimizing cavitation. Compared with a normal valve, the cavitation intensity associated with our modified valve was reduced by more than 66% at the higher load. Furthermore, the modified valve took longer to completely close than did the standard tilting disk valve, indicating a dampened impact and rebound of the occluder with its housing.


Asunto(s)
Diseño de Equipo , Análisis de Falla de Equipo , Prolapso de las Válvulas Cardíacas
17.
J Biomech Eng ; 130(4): 041001, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18601443

RESUMEN

Hemolysis and thrombosis are among the most detrimental effects associated with mechanical heart valves. The strength and structure of the flows generated by the closure of mechanical heart valves can be correlated with the extent of blood damage. In this in vitro study, a tilting disk mechanical heart valve has been modified to measure the flow created within the valve housing during the closing phase. This is the first study to focus on the region just upstream of the mitral valve occluder during this part of the cardiac cycle, where cavitation is known to occur and blood damage is most severe. Closure of the tilting disk valve was studied in a "single shot" chamber driven by a pneumatic pump. Laser Doppler velocimetry was used to measure all three velocity components over a 30 ms period encompassing the initial valve impact and rebound. An acrylic window placed in the housing enabled us to make flow measurements as close as 200 microm away from the closed occluder. Velocity profiles reveal the development of an atrial vortex on the major orifice side of the valve shed off the tip of the leaflet. The vortex strength makes this region susceptible to cavitation. Mean and maximum axial velocities as high as 7 ms and 20 ms were recorded, respectively. At closure, peak wall shear rates of 80,000 s(-1) were calculated close to the valve tip. The region of the flow examined here has been identified as a likely location of hemolysis and thrombosis in tilting disk valves. The results of this first comprehensive study measuring the flow within the housing of a tilting disk valve may be helpful in minimizing the extent of blood damage through the combined efforts of experimental and computational fluid dynamics to improve mechanical heart valve designs.


Asunto(s)
Diseño Asistido por Computadora , Análisis de Falla de Equipo , Prótesis Valvulares Cardíacas/efectos adversos , Hemólisis , Hemorreología/métodos , Modelos Cardiovasculares , Trombosis/fisiopatología , Velocidad del Flujo Sanguíneo , Presión Sanguínea , Simulación por Computador , Humanos , Falla de Prótesis , Trombosis/etiología
18.
J Biomech Eng ; 128(2): 217-22, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16524333

RESUMEN

Cavitation is known to cause blood element damage and may introduce gaseous emboli into the cerebral circulation, increasing the patient's risk of stroke. Discovering methods to reduce the intensity of cavitation induced by mechanical heart valves (MHVs) has long been an area of interest. A novel approach for analyzing MHV cavitation is presented. A wavelet denoising method is explored because currently used analytical techniques fail to suitably unmask the cavitation signal from other valve closing sounds and noise detected with a hydrophone. Wavelet functions are used to denoise the cavitation signal during MHV closure and rebound. The wavelet technique is applied to the signal produced by closure of a 29-mm Medtronic-Hall MHV in degassed water with a gas content of 5 ppm. Valve closing dynamics are investigated under loading conditions of 500, 2500, and 4500 mm Hg/s. The results display a marked improvement in the quantity and quality of information that can be extracted from acoustic cavitation signals using the wavelet technique compared to conventional analytical techniques. Time and frequency data indicate the likelihood and characteristics of cavitation formation under specified conditions. Using this wavelet technique we observe an improved signal-to-noise ratio, an enhanced time-dependent aspect, and the potential to minimize valve closing sounds, which disguise individual cavitation events. The overall goal of this work is to eventually link specific valves with characteristic waveforms or distinct types of cavitation, thus promoting improved valve designs.


Asunto(s)
Algoritmos , Diseño Asistido por Computadora , Análisis de Falla de Equipo/métodos , Prótesis Valvulares Cardíacas , Espectrografía del Sonido/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA