Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(13): E2682-E2688, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28289197

RESUMEN

The epidermis serves as a protective barrier in animals. After epidermal injury, barrier repair requires activation of many wound response genes in epidermal cells surrounding wound sites. Two such genes in Drosophila encode the enzymes dopa decarboxylase (Ddc) and tyrosine hydroxylase (ple). In this paper we explore the involvement of the Toll/NF-κB pathway in the localized activation of wound repair genes around epidermal breaks. Robust activation of wound-induced transcription from ple and Ddc requires Toll pathway components ranging from the extracellular ligand Spätzle to the Dif transcription factor. Epistasis experiments indicate a requirement for Spätzle ligand downstream of hydrogen peroxide and protease function, both of which are known activators of wound-induced transcription. The localized activation of Toll a few cell diameters from wound edges is reminiscent of local activation of Toll in early embryonic ventral hypoderm, consistent with the hypothesis that the dorsal-ventral patterning function of Toll arose from the evolutionary cooption of a morphogen-responsive function in wound repair. Furthermore, the combinatorial activity of Toll and other signaling pathways in activating epidermal barrier repair genes can help explain why developmental activation of the Toll, ERK, or JNK pathways alone fail to activate wound repair loci.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Receptores Toll-Like/fisiología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Modelos Biológicos , FN-kappa B/metabolismo , Transducción de Señal , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Cicatrización de Heridas/genética
2.
Nat Commun ; 15(1): 2629, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521791

RESUMEN

DNA double-strand breaks (DSBs) are repaired by a hierarchically regulated network of pathways. Factors influencing the choice of particular repair pathways, however remain poorly characterized. Here we develop an Integrated Classification Pipeline (ICP) to decompose and categorize CRISPR/Cas9 generated mutations on genomic target sites in complex multicellular insects. The ICP outputs graphic rank ordered classifications of mutant alleles to visualize discriminating DSB repair fingerprints generated from different target sites and alternative inheritance patterns of CRISPR components. We uncover highly reproducible lineage-specific mutation fingerprints in individual organisms and a developmental progression wherein Microhomology-Mediated End-Joining (MMEJ) or Insertion events predominate during early rapid mitotic cell cycles, switching to distinct subsets of Non-Homologous End-Joining (NHEJ) alleles, and then to Homology-Directed Repair (HDR)-based gene conversion. These repair signatures enable marker-free tracking of specific mutations in dynamic populations, including NHEJ and HDR events within the same samples, for in-depth analysis of diverse gene editing events.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Alelos , Reparación del ADN/genética , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Mutación , Reparación del ADN por Recombinación , Sistemas CRISPR-Cas/genética
3.
Nat Neurosci ; 27(1): 34-47, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37996528

RESUMEN

The mRNA transcript of the human STMN2 gene, encoding for stathmin-2 protein (also called SCG10), is profoundly impacted by TAR DNA-binding protein 43 (TDP-43) loss of function. The latter is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Using a combination of approaches, including transient antisense oligonucleotide-mediated suppression, sustained shRNA-induced depletion in aging mice, and germline deletion, we show that stathmin-2 has an important role in the establishment and maintenance of neurofilament-dependent axoplasmic organization that is critical for preserving the caliber and conduction velocity of myelinated large-diameter axons. Persistent stathmin-2 loss in adult mice results in pathologies found in ALS, including reduced interneurofilament spacing, axonal caliber collapse that drives tearing within outer myelin layers, diminished conduction velocity, progressive motor and sensory deficits, and muscle denervation. These findings reinforce restoration of stathmin-2 as an attractive therapeutic approach for ALS and other TDP-43-dependent neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Axones/fisiología , Desnervación , Proteínas de Unión al ADN/genética , Filamentos Intermedios/metabolismo , Filamentos Intermedios/patología , Neuronas Motoras/metabolismo , Estatmina/genética , Estatmina/metabolismo
4.
Dev Biol ; 360(1): 230-40, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21920356

RESUMEN

An important question in developmental biology is how relatively shallow gradients of morphogens can reliably establish a series of distinct transcriptional readouts. Current models emphasize interactions between transcription factors binding in distinct modes to cis-acting sequences of target genes. Another recent idea is that the cis-acting interactions may amplify preexisting biases or prepatterns to establish robust transcriptional responses. In this study, we examine the possible contribution of one such source of prepattern, namely gene length. We developed quantitative imaging tools to measure gene expression levels for several loci at a time on a single-cell basis and applied these quantitative imaging tools to dissect the establishment of a gene expression border separating the mesoderm and neuroectoderm in the early Drosophila embryo. We first characterized the formation of a transient ventral-to-dorsal gradient of the Snail (Sna) repressor and then examined the relationship between this gradient and repression of neural target genes in the mesoderm. We found that neural genes are repressed in a nested pattern within a zone of the mesoderm abutting the neuroectoderm, where Sna levels are graded. While several factors may contribute to the transient graded response to the Sna gradient, our analysis suggests that gene length may play an important, albeit transient, role in establishing these distinct transcriptional responses. One prediction of the gene-length-dependent transcriptional patterning model is that the co-regulated genes knirps (a short gene) and knirps-related (a long gene) should be transiently expressed in domains of differing widths, which we confirmed experimentally. These findings suggest that gene length may contribute to establishing graded responses to morphogen gradients by providing transient prepatterns that are subsequently amplified and stabilized by traditional cis-regulatory interactions.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Genes de Insecto , Transcripción Genética , Animales , Tipificación del Cuerpo/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Prueba de Complementación Genética , Mesodermo/embriología , Mesodermo/metabolismo , Modelos Genéticos , Neurogénesis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Nucleic Acids Res ; 38(10): e115, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20164092

RESUMEN

Fluorescent in situ hybridization (FISH) techniques are becoming extremely sensitive, to the point where individual RNA or DNA molecules can be detected with small probes. At this level of sensitivity, the elimination of 'off-target' hybridization is of crucial importance, but typical probes used for RNA and DNA FISH contain sequences repeated elsewhere in the genome. We find that very short (e.g. 20 nt) perfect repeated sequences within much longer probes (e.g. 350-1500 nt) can produce significant off-target signals. The extent of noise is surprising given the long length of the probes and the short length of non-specific regions. When we removed the small regions of repeated sequence from either short or long probes, we find that the signal-to-noise ratio is increased by orders of magnitude, putting us in a regime where fluorescent signals can be considered to be a quantitative measure of target transcript numbers. As the majority of genes in complex organisms contain repeated k-mers, we provide genome-wide annotations of k-mer-uniqueness at http://cbio.mskcc.org/ approximately aarvey/repeatmap.


Asunto(s)
Hibridación Fluorescente in Situ/métodos , Sondas ARN/química , ARN Mensajero/análisis , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/química , Proteínas Nucleares/genética , ARN Mensajero/química , Secuencias Repetitivas de Ácidos Nucleicos , Factores de Transcripción/genética
6.
G3 (Bethesda) ; 12(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34791185

RESUMEN

Long noncoding RNAs (lncRNAs) have been implicated in a variety of processes in development, differentiation, and disease. In Drosophila melanogaster, the bithorax Hox cluster contains three Hox genes [Ultrabithorax (Ubx), abdominal-A, and Abdominal-B], along with a number of lncRNAs, most with unknown functions. Here, we investigated the function of a lncRNA, lncRNA:PS4 that originates in the second intron of Ubx and is transcribed in the antisense orientation to Ubx. The expression pattern of lncRNA:PS4 is complementary to Ubx in the thoracic primordia, and the lncRNA:PS4 coding region overlaps the location of the large insertion that causes the dominant homeotic mutation Contrabithorax-1 (UbxCbx-1), which partially transforms Drosophila wings into halteres via ectopic activation of Ubx. This led us to investigate the potential role of this lncRNA in regulation of Ubx expression. The UbxCbx-1 mutation dramatically changes the pattern of lncRNA:PS4, eliminating the expression of most lncRNA:PS4 sequences from parasegment 4 (where Ubx protein is normally absent) and ectopically activating lncRNA:PS4 at high levels in the abdomen (where Ubx is normally expressed). These changes, however, did not lead to changes in the Ubx embryonic transcription pattern. Targeted deletion of the two promoters of lncRNA:PS4 did not result in the change of Ubx expression in the embryos. In the genetic background of a UbxCbx-1 mutation, the lncRNA:PS4 mutation does slightly enhance the ectopic activation of Ubx protein expression in wing discs and also slightly enhances the wing phenotype seen in UbxCbx-1 heterozygotes.


Asunto(s)
Proteínas de Drosophila , ARN Largo no Codificante , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Antecedentes Genéticos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Intrones/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
G3 (Bethesda) ; 12(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34791161

RESUMEN

Gene drives are programmable genetic elements that can spread beneficial traits into wild populations to aid in vector-borne pathogen control. Two different drives have been developed for population modification of mosquito vectors. The Reckh drive (vasa-Cas9) in Anopheles stephensi displays efficient allelic conversion through males but generates frequent drive-resistant mutant alleles when passed through females. In contrast, the AgNosCd-1 drive (nos-Cas9) in Anopheles gambiae achieves almost complete allelic conversion through both genders. Here, we examined the subcellular localization of RNA transcripts in the mosquito germline. In both transgenic lines, Cas9 is strictly coexpressed with endogenous genes in stem and premeiotic cells of the testes, where both drives display highly efficient conversion. However, we observed distinct colocalization patterns for the two drives in female reproductive tissues. These studies suggest potential determinants underlying efficient drive through the female germline. We also evaluated expression patterns of alternative germline genes for future gene-drive designs.


Asunto(s)
Anopheles , Tecnología de Genética Dirigida , Animales , Anopheles/genética , Sistemas CRISPR-Cas , Femenino , Células Germinativas , Masculino , Mosquitos Vectores/genética
9.
PLoS One ; 8(4): e61773, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23637905

RESUMEN

After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues.


Asunto(s)
Drosophila/genética , Drosophila/metabolismo , Regeneración/genética , Serina Proteasas/metabolismo , Transducción de Señal , Cicatrización de Heridas/genética , Animales , Muerte Celular/efectos de los fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epidermis/lesiones , Epidermis/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genes Reporteros , Proteolisis , Transcripción Genética , Tripsina/metabolismo , Tripsina/farmacología
10.
AAPS J ; 8(2): E409-12, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16808043

RESUMEN

Only a few studies have addressed the transport of 2-arachidonoylglycerol (2-AG), a naturally occurring agonist for cannabinoid receptors. Based upon saturation kinetics, these early reports have proposed that 2-AG enters the cell by a specific 2-AG transporter, via the putative anandamide transporter, or by simple diffusion. In this review, the uptake of 2-AG is discussed in light of the recent advances that have been made for anandamide transport, where the mechanism appears to be rate-limited diffusion through the membrane. Endocannabinoids may be a distinct class of agonists since they are hydrophobic and neutral, exhibiting similar biophysical properties to some anesthetics that freely diffuse through the membrane.


Asunto(s)
Ácidos Araquidónicos/farmacocinética , Glicéridos/farmacocinética , Animales , Transporte Biológico , Moduladores de Receptores de Cannabinoides/metabolismo , Cannabinoides/farmacocinética , Membrana Celular/metabolismo , Endocannabinoides , Humanos , Modelos Biológicos , Neurotransmisores/metabolismo
11.
J Biol Chem ; 281(14): 9066-75, 2006 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-16461355

RESUMEN

The uptake of arachidonoyl ethanolamide (anandamide, AEA) in rat basophilic leukemia cells (RBL-2H3) has been proposed to occur via a saturable transporter that is blocked by specific inhibitors. Measuring uptake at 25 s, when fatty acid amide hydrolase (FAAH) does not appreciably affect uptake, AEA accumulated via a nonsaturable mechanism at 37 degrees C. Interestingly, saturation was observed when uptake was plotted using unbound AEA at 37 degrees C. Such apparent saturation can be explained by rate-limited delivery of AEA through an unstirred water layer surrounding the cells (1). In support of this, we observed kinetics consistent with rate-limited diffusion at 0 degrees C. Novel transport inhibitors have been synthesized that are either weak FAAH inhibitors or do not inhibit FAAH in vitro (e.g. UCM707, OMDM2, and AM1172). In the current study, none of these purported AEA transporter inhibitors affected uptake at 25 s. Longer incubation times illuminate downstream events that drive AEA uptake. Unlike the situation at 25 s, the efficacy of these inhibitors was unmasked at 5 min with appreciable inhibition of AEA accumulation correlating with partial inhibition of AEA hydrolysis. The uptake and hydrolysis profiles observed with UCM707, VDM11, OMDM2, and AM1172 mirrored two selective and potent FAAH inhibitors CAY10400 and URB597 (at low concentrations), indicating that weak inhibition of FAAH can have a pronounced effect upon AEA uptake. At 5 min, the putative transport inhibitors did not reduce AEA uptake in FAAH chemical knock-out cells. This strongly suggests that the target of UCM707, VDM11, OMDM2, and AM1172 is not a transporter at the plasma membrane but rather FAAH, or an uncharacterized intracellular component that delivers AEA to FAAH. This system is therefore unique among neuro/immune modulators because AEA, an uncharged hydrophobic molecule, diffuses into cells and partial inhibition of FAAH has a pronounced effect upon its uptake.


Asunto(s)
Amidohidrolasas/metabolismo , Ácidos Araquidónicos/farmacocinética , Bloqueadores de los Canales de Calcio/farmacocinética , Animales , Técnicas de Cultivo de Célula , Membrana Celular , Difusión , Endocannabinoides , Humanos , Hidrólisis , Cinética , Leucemia Basofílica Aguda , Alcamidas Poliinsaturadas , Ratas , Albúmina Sérica Bovina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA