Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioconjug Chem ; 35(3): 389-399, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38470611

RESUMEN

The Mesenchymal Epithelial Transition (MET) receptor tyrosine kinase is upregulated or mutated in 5% of non-small-cell lung cancer (NSCLC) patients and overexpressed in multiple other cancers. We sought to develop a novel single-domain camelid antibody with high affinity for MET that could be used to deliver conjugated payloads to MET expressing cancers. From a naïve camelid variable-heavy-heavy (VHH) domain phage display library, we identified a VHH clone termed 1E7 that displayed high affinity for human MET and was cross-reactive with MET across multiple species. When expressed as a bivalent human Fc fusion protein, 1E7-Fc was found to selectively bind to EBC-1 (MET amplified) and UW-Lung 21 (MET exon 14 mutated) cell lines by flow cytometry and immunofluorescence imaging. Next, we investigated the ability of [89Zr]Zr-1E7-Fc to detect MET expression in vivo by PET/CT imaging. [89Zr]Zr-1E7-Fc demonstrated rapid localization and high tumor uptake in both xenografts with a %ID/g of 6.4 and 5.8 for EBC-1 and UW-Lung 21 at 24 h, respectively. At the 24 h time point, clearance from secondary and nontarget tissues was also observed. Altogether, our data suggest that 1E7-Fc represents a platform technology that can be employed to potentially both image and treat MET-altered NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Anticuerpos de Dominio Único , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Línea Celular Tumoral
2.
Mol Pharm ; 21(9): 4324-4335, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39164886

RESUMEN

Positron emission tomography (PET) is a powerful tool for investigating the in vivo behavior of drug delivery systems. We aimed to assess the biodistribution of extracellular vesicles (EVs), nanosized vesicles secreted by cells isolated from various human cell sources using PET. EVs were isolated from mesenchymal stromal cells (MSCs) (MSC EVs), human macrophages (Mϕ EVs), and a melanoma cell line (A375 EVs) by centrifugation and were conjugated with deferoxamine for radiolabeling with Zr-89. PET using conjugated and radiolabeled EVs evaluated their in vivo biodistribution and tissue tropisms. Our study also investigated differences in mouse models, utilizing immunocompetent and immunocompromised mice and an A375 xenograft tumor model. Lastly, we investigated the impact of different labeling techniques on the observed EV biodistribution, including covalent surface modification and membrane incorporation. PET showed that all tested EVs exhibited extended in vivo circulation and generally low uptake in the liver, spleen, and lungs. However, Mϕ EVs showed high liver uptake, potentially attributable to the intrinsic tissue tropism of these EVs from the surface protein composition. MSC EV biodistribution differed between immunocompetent and immunodeficient mice, with increased spleen uptake observed in the latter. PET using A375 xenografts demonstrated efficient tumor uptake of EVs, but no preferential tissue-specific tropism of A375 EVs was found. Biodistribution differences between labeling techniques showed that surface-conjugated EVs had preferential blood circulation and low liver, spleen, and lung uptake compared to membrane integration. This study demonstrates the potential of EVs as effective drug carriers for various diseases, highlights the importance of selecting appropriate cell sources for EV-based drug delivery, and suggests that EV tropism can be harnessed to optimize therapeutic efficacy. Our findings indicate that the cellular source of EVs, labeling technique, and animal model can influence the observed biodistribution.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Tomografía de Emisión de Positrones , Animales , Humanos , Vesículas Extracelulares/metabolismo , Distribución Tisular , Ratones , Tomografía de Emisión de Positrones/métodos , Línea Celular Tumoral , Células Madre Mesenquimatosas/metabolismo , Macrófagos/metabolismo , Circonio/química , Circonio/farmacocinética , Deferoxamina/química , Deferoxamina/farmacocinética , Radioisótopos/química , Radioisótopos/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Melanoma/metabolismo , Melanoma/diagnóstico por imagen
3.
J Immunol ; 207(2): 720-734, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34261667

RESUMEN

Most shared resource flow cytometry facilities do not permit analysis of radioactive samples. We are investigating low-dose molecular targeted radionuclide therapy (MTRT) as an immunomodulator in combination with in situ tumor vaccines and need to analyze radioactive samples from MTRT-treated mice using flow cytometry. Further, the sudden shutdown of core facilities in response to the COVID-19 pandemic has created an unprecedented work stoppage. In these and other research settings, a robust and reliable means of cryopreservation of immune samples is required. We evaluated different fixation and cryopreservation protocols of disaggregated tumor cells with the aim of identifying a protocol for subsequent flow cytometry of the thawed sample, which most accurately reflects the flow cytometric analysis of the tumor immune microenvironment of a freshly disaggregated and analyzed sample. Cohorts of C57BL/6 mice bearing B78 melanoma tumors were evaluated using dual lymphoid and myeloid immunophenotyping panels involving fixation and cryopreservation at three distinct points during the workflow. Results demonstrate that freezing samples after all staining and fixation are completed most accurately matches the results from noncryopreserved equivalent samples. We observed that cryopreservation of living, unfixed cells introduces a nonuniform alteration to PD1 expression. We confirm the utility of our cryopreservation protocol by comparing tumors treated with in situ tumor vaccines, analyzing both fresh and cryopreserved tumor samples with similar results. Last, we use this cryopreservation protocol with radioactive specimens to demonstrate potentially beneficial effector cell changes to the tumor immune microenvironment following administration of a novel MTRT in a dose- and time-dependent manner.


Asunto(s)
Criopreservación/métodos , Citometría de Flujo/métodos , Leucocitos Mononucleares/inmunología , Melanoma Experimental/patología , Células Mieloides/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Inmunofenotipificación/métodos , Ratones , Ratones Endogámicos C57BL , Células T Asesinas Naturales/inmunología , Pandemias , Transducción de Señal/inmunología , Microambiente Tumoral/inmunología
4.
Eur J Nucl Med Mol Imaging ; 49(11): 3705-3716, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35556159

RESUMEN

PURPOSE: The lack of effective molecular biomarkers to monitor idiopathic pulmonary fibrosis (IPF) activity or treatment response remains an unmet clinical need. Herein, we determined the utility of fibroblast activation protein inhibitor for positron emission tomography (FAPI PET) imaging in a mouse model of pulmonary fibrosis. METHODS: Pulmonary fibrosis was induced by intratracheal administration of bleomycin (1 U/kg) while intratracheal saline was administered to control mice. Subgroups from each cohort (n = 3-5) underwent dynamic 1 h PET/CT after intravenously injecting FAPI-46 radiolabeled with gallium-68 ([68 Ga]Ga-FAPI-46) at 7 days and 14 days following disease induction. Animals were sacrificed following imaging for ex vivo gamma counting and histologic correlation. [68 Ga]Ga-FAPI-46 uptake was quantified and reported as percent injected activity per cc (%IA/cc) or percent injected activity (%IA). Lung CT density in Hounsfield units (HU) was also correlated with histologic examinations of lung fibrosis. RESULTS: CT only detected differences in the fibrotic response at 14 days post-bleomycin administration. [68 Ga]Ga-FAPI-46 lung uptake was significantly higher in the bleomycin group than in control subjects at 7 days and 14 days. Significantly (P = 0.0012) increased [68 Ga]Ga-FAPI-46 lung uptake in the bleomycin groups at 14 days (1.01 ± 0.12%IA/cc) vs. 7 days (0.33 ± 0.09%IA/cc) at 60 min post-injection of the tracer was observed. These findings were consistent with an increase in both fibrinogenesis and FAP expression as seen in histology. CONCLUSION: CT was unable to assess disease activity in a murine model of IPF. Conversely, FAPI PET detected both the presence and activity of lung fibrogenesis, making it a promising tool for assessing early disease activity and evaluating the efficacy of therapeutic interventions in lung fibrosis patients.


Asunto(s)
Fibrosis Pulmonar Idiopática , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Bleomicina , Radioisótopos de Galio , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones , Quinolinas
5.
Mol Pharm ; 16(8): 3350-3360, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31082240

RESUMEN

Alkylphosphocholine (APC) analogs are a novel class of broad-spectrum tumor-targeting agents that can be used for both diagnosis and treatment of cancer. The potential for clinical translation for APC analogs will strongly depend on their pharmacokinetic (PK) profiles. The aim of this work was to understand how the chemical structures of various APC analogs impact binding and PK. To achieve this aim, we performed in silico docking analysis, in vitro and in vivo partitioning experiments, and in vivo PK studies. Our results have identified 7 potential high-affinity binding sites of these compounds on human serum albumin (HSA) and suggest that the size of the functional group directly influences the albumin binding, partitioning, and PK. Namely, the bulkier the functional groups, the weaker the agent binds to albumin, the more the agent partitions onto lipoproteins, and the less time the agent spends in circulation. The results of these experiments provide novel molecular insights into the binding, partitioning, and PK of this class of compounds and similar molecules as well as suggest pharmacological strategies to alter their PK profiles. Importantly, our methodology may provide a way to design better drugs by better characterizing the PK profile for lead compound optimization.


Asunto(s)
Antineoplásicos/farmacocinética , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Fosforilcolina/farmacocinética , Albúmina Sérica Humana/metabolismo , Animales , Antineoplásicos/química , Humanos , Lipoproteínas/metabolismo , Ratones , Ratones Desnudos , Modelos Biológicos , Neoplasias/sangre , Neoplasias/tratamiento farmacológico , Fosforilcolina/análogos & derivados , Fosforilcolina/química
6.
Eur J Nucl Med Mol Imaging ; 45(1): 110-120, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28821924

RESUMEN

PURPOSE: Nivolumab is a human monoclonal antibody specific for programmed cell death-1 (PD-1), a negative regulator of T-cell activation and response. Acting as an immune checkpoint inhibitor, nivolumab binds to PD-1 expressed on the surface of many immune cells and prevents ligation by its natural ligands. Nivolumab is only effective in a subset of patients, and there is limited evidence supporting its use for diagnostic, monitoring, or stratification purposes. METHODS: 89Zr-Df-nivolumab was synthesized to map the biodistribution of PD-1-expressing tumor infiltrating T-cells in vivo using a humanized murine model of lung cancer. The tracer was developed by radiolabeling the antibody with the positron emitter zirconium-89 (89Zr). Imaging results were validated by ex vivo biodistribution studies, and PD-1 expression was validated by immunohistochemistry. Data obtained from PET imaging were used to determine human dosimetry estimations. RESULTS: The tracer showed elevated binding to stimulated PD-1 expressing T-cells in vitro and in vivo. PET imaging of 89Zr-Df-nivolumab allowed for clear delineation of subcutaneous tumors through targeting of localized activated T-cells expressing PD-1 in the tumors and salivary glands of humanized A549 tumor-bearing mice. In addition to tumor uptake, salivary and lacrimal gland infiltration of T-cells was noticeably visible and confirmed via histological analysis. CONCLUSIONS: These data support our claim that PD-1-targeted agents allow for tumor imaging in vivo, which may assist in the design and development of new immunotherapies. In the future, noninvasive imaging of immunotherapy biomarkers may assist in disease diagnostics, disease monitoring, and patient stratification.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Infiltración Leucémica/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Linfocitos T/metabolismo , Circonio/química , Animales , Anticuerpos Monoclonales/química , Células Cultivadas , Humanos , Infiltración Leucémica/patología , Pulmón/diagnóstico por imagen , Pulmón/patología , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Nivolumab , Receptor de Muerte Celular Programada 1/metabolismo , Radiofármacos/síntesis química , Distribución Tisular
7.
Eur J Nucl Med Mol Imaging ; 45(1): 123-131, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28821931

RESUMEN

PURPOSE: Increased angiogenesis is a marker of aggressiveness in many cancers. Targeted radionuclide therapy of these cancers with angiogenesis-targeting agents may curtail this increased blood vessel formation and slow the growth of tumors, both primary and metastatic. CD105, or endoglin, has a primary role in angiogenesis in a number of cancers, making this a widely applicable target for targeted radioimmunotherapy. METHODS: The anti-CD105 antibody, TRC105 (TRACON Pharmaceuticals), was conjugated with DTPA for radiolabeling with 177Lu (t 1/2 6.65 days). Balb/c mice were implanted with 4T1 mammary carcinoma cells, and five study groups were used: 177Lu only, TRC105 only, 177Lu-DTPA-IgG (a nonspecific antibody), 177Lu-DTPA-TRC105 low-dose, and 177Lu-DTPA-TRC105 high-dose. Toxicity of the agent was monitored by body weight measurements and analysis of blood markers. Biodistribution studies of 177Lu-DTPA-TRC105 were also performed at 1 and 7 days after injection. Ex vivo histology studies of various tissues were conducted at 1, 7, and 30 days after injection of high-dose 177Lu-DTPA-TRC105. RESULTS: Biodistribution studies indicated steady uptake of 177Lu-DTPA-TRC105 in 4T1 tumors between 1 and 7 days after injection (14.3 ± 2.3%ID/g and 11.6 ± 6.1%ID/g, respectively; n = 3) and gradual clearance from other organs. Significant inhibition of tumor growth was observed in the high-dose group, with a corresponding significant increase in survival (p < 0.001, all groups). In most study groups (all except the nonspecific IgG group), the body weights of the mice did not decrease by more than 10%, indicating the safety of the injected agents. Serum alanine transaminase levels remained nearly constant indicating no damage to the liver (a primary clearance organ of the agent), and this was confirmed by ex vivo histological analyses. CONCLUSION: 177Lu-DTPA-TRC105, when administered at a sufficient dose, is able to curtail tumor growth and provide a significant survival benefit without off-target toxicity. Thus, this targeted agent could be used in combination with other treatment options to slow tumor growth allowing the other agents to be more effective.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Lutecio/química , Neoplasias Experimentales/radioterapia , Neovascularización Patológica/radioterapia , Radioinmunoterapia/métodos , Radioisótopos/química , Radiofármacos/uso terapéutico , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Endoglina/inmunología , Femenino , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/patología , Ácido Pentético/química , Radiofármacos/efectos adversos , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Distribución Tisular
8.
Mol Pharm ; 15(8): 3434-3441, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-29889530

RESUMEN

Peripheral arterial disease (PAD) consists of a persistent obstruction of lower-extremity arteries further from the aortic bifurcation attributable to atherosclerosis. PAD is correlated with an elevated risk of morbidity and mortality as well as of deterioration of the quality of life with claudication and chronic leg ischemia being the most frequent complications. Therapeutic angiogenesis is a promising therapeutic strategy that aims to restore the blood flow to the ischemic limb. In this context, assessing the efficacy of pro-angiogenic treatment using a reliable noninvasive imaging technique would greatly benefit the implementation of this therapeutic approach. Herein, we describe the angiogenesis and perfusion recovery characteristics of a mouse model of PAD via in vivo positron emission tomography (PET) imaging of CD146 expression. For that, ischemia was generated by ligation and excision of the right femoral artery of Balb/C mice and confirmed through laser Doppler imaging. The angiogenic process, induced by ischemia, was noninvasively monitored and quantified through PET imaging of CD146 expression in the injured leg using a 64Cu-labeled anti-CD146 monoclonal antibody, 64Cu-NOTA-YY146, at post-operative days 3, 10, and 17. The CD146-specific character of 64Cu-NOTA-YY146 was verified via a blocking study performed in another cohort at day 10 after surgery. Tracer uptake was correlated with in situ CD146 expression by histological analysis. PET scan results indicated that 64Cu-NOTA-YY146 uptake in the injured leg was significantly higher, with the highest uptake with a value of 14.1 ± 2.0 %ID/g at post-operative day 3, compared to the normal contralateral hindlimb, at all time points (maximum uptake of 2.2 ± 0.2 %ID/g). The pre-injection of a blocking dose resulted in a significantly lower tracer uptake in the ischemic hindlimb on day 10 after surgery, confirming tracer specificity. CD146/CD31 immunofluorescent co-staining showed an excellent correlation between the high uptake of the tracer with in situ CD146 expression levels and a marked co-localization of CD146 and CD31 signals. In conclusion, persistent and CD146-specific tracer accumulation in the ischemic hindlimb was observed, confirming the feasibility of 64Cu-NOTA-YY146 to be used as an imaging agent to monitor the progression of angiogenesis and recovery in future PAD research.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Isquemia/diagnóstico por imagen , Enfermedad Arterial Periférica/diagnóstico por imagen , Animales , Anticuerpos Monoclonales/química , Antígeno CD146/antagonistas & inhibidores , Antígeno CD146/metabolismo , Radioisótopos de Cobre/administración & dosificación , Radioisótopos de Cobre/química , Modelos Animales de Enfermedad , Femenino , Arteria Femoral/diagnóstico por imagen , Compuestos Heterocíclicos con 1 Anillo/administración & dosificación , Compuestos Heterocíclicos con 1 Anillo/química , Miembro Posterior/irrigación sanguínea , Humanos , Isquemia/etiología , Isquemia/patología , Flujometría por Láser-Doppler , Ratones , Ratones Endogámicos BALB C , Imagen Molecular/métodos , Enfermedad Arterial Periférica/etiología , Enfermedad Arterial Periférica/patología , Tomografía de Emisión de Positrones/métodos , Microtomografía por Rayos X
9.
Proc Natl Acad Sci U S A ; 112(41): 12806-11, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26417085

RESUMEN

Early diagnosis remains a task of upmost importance for reducing cancer morbidity and mortality. Successful development of highly specific companion diagnostics targeting aberrant molecular pathways of cancer is needed for sensitive detection, accurate diagnosis, and opportune therapeutic intervention. Herein, we generated a bispecific immunoconjugate [denoted as Bs-F(ab)2] by linking two antibody Fab fragments, an anti-epidermal growth factor receptor (EGFR) Fab and an anti-CD105 Fab, via bioorthogonal "click" ligation of trans-cyclooctene and tetrazine. PET imaging of mice bearing U87MG (EGFR/CD105(+/+)) tumors with (64)Cu-labeled Bs-F(ab)2 revealed a significantly enhanced tumor uptake [42.9 ± 9.5 percentage injected dose per gram (%ID/g); n = 4] and tumor-to-background ratio (tumor/muscle ratio of 120.2 ± 44.4 at 36 h postinjection; n = 4) compared with each monospecific Fab tracer. Thus, we demonstrated that dual targeting of EGFR and CD105 provides a synergistic improvement on both affinity and specificity of (64)Cu-NOTA-Bs-F(ab)2. (64)Cu-NOTA-Bs-F(ab)2 was able to visualize small U87MG tumor nodules (<5 mm in diameter), owing to high tumor uptake (31.4 ± 10.8%ID/g at 36 h postinjection) and a tumor/muscle ratio of 76.4 ± 52.3, which provided excellent sensitivity for early detection. Finally, we successfully confirmed the feasibility of a ZW800-1-labeled Bs-F(ab)2 for near-infrared fluorescence imaging and image-guided surgical resection of U87MG tumors. More importantly, our rationale can be used in the construction of other disease-targeting bispecific antibody fragments for early detection and diagnosis of small malignant lesions.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Anticuerpos Antineoplásicos/farmacología , Neoplasias Encefálicas/diagnóstico por imagen , Medios de Contraste/farmacología , Fragmentos Fab de Inmunoglobulinas/farmacología , Neoplasias Experimentales/diagnóstico por imagen , Tomografía de Emisión de Positrones , Animales , Anticuerpos Biespecíficos/química , Anticuerpos Antineoplásicos/química , Química Clic , Medios de Contraste/química , Fragmentos Fab de Inmunoglobulinas/química , Ratones , Radiografía
10.
Proc Natl Acad Sci U S A ; 112(47): E6525-34, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26553993

RESUMEN

Given the highly heterogeneous character of brain malignancies and the associated implication for its proper diagnosis and treatment, finding biomarkers that better characterize this disease from a molecular standpoint is imperative. In this study, we evaluated CD146 as a potential molecular target for diagnosis and targeted therapy of glioblastoma multiforme (GBM), the most common and lethal brain malignancy. YY146, an anti-CD146 monoclonal antibody, was generated and radiolabeled for noninvasive positron-emission tomography (PET) imaging of orthotopic GBM models. (64)Cu-labeled YY146 preferentially accumulated in the tumors of mice bearing U87MG xenografts, which allowed the acquisition of high-contrast PET images of small tumor nodules (∼ 2 mm). Additionally, we found that tumor uptake correlated with the levels of CD146 expression in a highly specific manner. We also explored the potential therapeutic effects of YY146 on the cancer stem cell (CSC) and epithelial-to-mesenchymal (EMT) properties of U87MG cells, demonstrating that YY146 can mitigate those aggressive phenotypes. Using YY146 as the primary antibody, we performed histological studies of World Health Organization (WHO) grades I through IV primary gliomas. The positive correlation found between CD146-positive staining and high tumor grade (χ(2) = 9.028; P = 0.029) concurred with the GBM data available in The Cancer Genome Atlas (TCGA) and validated the clinical value of YY146. In addition, we demonstrate that YY146 can be used to detect CD146 in various cancer cell lines and human resected tumor tissues of multiple other tumor types (gastric, ovarian, liver, and lung), indicating a broad applicability of YY146 in solid tumors.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/inmunología , Antígeno CD146/metabolismo , Glioma/diagnóstico por imagen , Glioma/inmunología , Tomografía de Emisión de Positrones , Animales , Formación de Anticuerpos/efectos de los fármacos , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Células Clonales , Radioisótopos de Cobre , Transición Epitelial-Mesenquimal/efectos de los fármacos , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Glioma/patología , Humanos , Imagen por Resonancia Magnética , Ratones Desnudos , Clasificación del Tumor , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Fenotipo , Biosíntesis de Proteínas/efectos de los fármacos , Tejido Subcutáneo/efectos de los fármacos , Tejido Subcutáneo/metabolismo , Factores de Tiempo , Distribución Tisular/efectos de los fármacos , Tomografía Computarizada por Rayos X , Transcripción Genética/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Mol Pharm ; 14(10): 3239-3247, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28825843

RESUMEN

CD146 has been identified as an excellent biomarker for lung cancer as its overexpression in solid tumors has been linked to disease progression, invasion, and metastasis. Previously, our group described a positive correlation between 64Cu-labeled YY146 uptake and increased expression of CD146 in six human lung cancer cell lines using subcutaneous tumor models. In this study, we investigate a monoclonal antibody called YY146 for immunoPET imaging of CD146 in two intrapulmonary metastasis models of non-small cell lung cancer (NSCLC). The binding and immunoreactivity of the tracer were assessed by in vitro assays. Radiolabeling of YY146 with positron emitting Cu-64 (64Cu-NOTA-YY146) enabled PET imaging of intrapulmonary metastasis. Mice were intravenously injected with two million tumor cells, and CT imaging was used to verify the presence of lung metastases. 64Cu-NOTA-YY146 was injected into tumor-bearing mice, and animals were subjected to PET/CT imaging at 4, 24, and 48 h postinjection. Both the average and maximum lung PET signal intensities were quantified and compared between high and low CD146-expressing metastases. Further validation was accomplished through immunofluorescence imaging of resected tissues with CD31 and CD146. In flow cytometry, YY146 revealed strong binding to CD146 in H460 cells due to its high expression with minimal binding to CD146-low expressing H358 cells. Both YY146 and NOTA-YY146 showed similar binding, suggesting that NOTA conjugation did not elicit any negative effects on its binding affinity. Imaging of 64Cu-NOTA-YY146 in H460 tumor-bearing mice revealed rapid, persistent, and highly specific tracer accumulation. Uptake of 64Cu-NOTA-YY146 in the whole lung was calculated for H460 and H358 as 7.43 ± 0.38 and 3.95 ± 0.47% ID/g at 48 h postinjection (n = 4, p < 0.05), and the maximum lung signals were determined to be 13.85 ± 1.07 (H460) and 6.08 ± 0.73% ID/g (H358) at equivalent time points (n = 4, p < 0.05). To ensure the specificity of the tracer, a nonspecific antibody was injected into H460 tumor-bearing mice. Ex vivo biodistribution and immunofluorescence imaging validated the PET findings. In summary, 64Cu-NOTA-YY146 allowed for successful imaging of CD146-expressing intrapulmonary metastases of NSCLC in mice. This preliminary study provides evidence supporting the future clinical utilization of 64Cu-NOTA-YY146 for possible treatment monitoring of CD146-targeted therapy or improving patient stratification.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Imagen Molecular/métodos , Animales , Anticuerpos Monoclonales/química , Biomarcadores de Tumor/inmunología , Antígeno CD146/inmunología , Antígeno CD146/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Radioisótopos de Cobre , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Compuestos Heterocíclicos , Compuestos Heterocíclicos con 1 Anillo , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Trazadores Radiactivos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Acta Pharmacol Sin ; 38(6): 907-913, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28414201

RESUMEN

Titanium-45 (45Ti) with a three-hour half-life (t1/2=3.08 h), low maximum positron energy and high positron emission branching ratio, is a suitable positron emission tomography (PET) isotope whose potential has not yet been fully explored. Complicated radiochemistry and rapid hydrolysis continue to be major challenges to the development of 45Ti compounds based on a traditional chelator-based radiolabeling strategy. In this study we introduced an intrinsic (or chelator-free) radiolabeling technique for the successful labeling of 45Ti using mesoporous silica nanoparticle (MSN). We synthesized uniform MSN with an average particle size of ∼150 nm in diameter. The intrinsic 45Ti-labeling was accomplished through strong interactions between 45Ti (hard Lewis acid) and hard oxygen donors (hard Lewis bases), the deprotonated silanol groups (-Si-O-) from the outer surface and inner meso-channels of MSN. In vivo tumor-targeted PET imaging of as-developed PEGylated [45Ti]MSN was further demonstrated in the 4T1 murine breast tumor-bearing mice. This MSN-based intrinsic radiolabeling strategy could open up new possibilities and speed up the biomedical applications of 45Ti in the future.


Asunto(s)
Neoplasias Mamarias Experimentales/diagnóstico , Nanopartículas/química , Radioisótopos/química , Dióxido de Silicio/química , Titanio/química , Animales , Femenino , Marcaje Isotópico , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Porosidad , Tomografía de Emisión de Positrones , Propiedades de Superficie
13.
Small ; 12(20): 2775-82, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27062146

RESUMEN

Optical imaging has been the primary imaging modality for nearly all of the renal clearable nanoparticles since 2007. Due to the tissue depth penetration limitation, providing accurate organ kinetics non-invasively has long been a huge challenge. Although a more quantitative imaging technique has been developed by labeling nanoparticles with single-photon emission computed tomography (SPECT) isotopes, the low temporal resolution of SPECT still limits its potential for visualizing the rapid dynamic process of renal clearable nanoparticles in vivo. The dynamic positron emission tomography (PET) imaging of renal clearable gold (Au) nanoparticles by labeling them with copper-64 ((64) Cu) to form (64) Cu-NOTA-Au-GSH is reported. Systematic nanoparticle synthesis and characterizations are performed to demonstrate the efficient renal clearance of as-prepared nanoparticles. A rapid renal clearance of (64) Cu-NOTA-Au-GSH is observed (>75%ID at 24 h post-injection) with its elimination half-life calculated to be less than 6 min, over 130 times shorter than previously reported similar nanoparticles. Dynamic PET imaging not only addresses the current challenges in accurately and non-invasively acquiring the organ kinetics, but also potentially provides a highly useful tool for studying renal clearance mechanism of other ultra-small nanoparticles, as well as the diagnosis of kidney diseases in the near future.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Tomografía de Emisión de Positrones/métodos , Animales , Riñón/metabolismo , Cinética , Ratones , Ratones Endogámicos BALB C , Tomografía Computarizada de Emisión de Fotón Único
14.
Small ; 12(41): 5750-5758, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27593416

RESUMEN

While position emission tomography (PET) is an important molecular imaging technique for both preclinical research and clinical disease diagnosis/prognosis, chelator-free radiolabeling has emerged as a promising alternative approach to label biomolecules or nanoprobes in a facile way. Herein, starting from bottom-up synthesized WS2 nanoflakes, this study fabricates a unique type of WS2 /WOx nanodots, which can function as inherent hard oxygen donor for stable radiolabeling with Zirconium-89 isotope (89 Zr). Upon simply mixing, 89 Zr can be anchored on the surface of polyethylene glycol (PEG) modified WS2 /WOx (WS2 /WOx -PEG) nanodots via a chelator-free method with surprisingly high labeling yield and great stability. A higher degree of oxidation in the WS2 /WOx -PEG sample (WS2 /WOx (0.4)) produces more electron pairs, which would be beneficial for chelator-free labeling of 89 Zr with higher yields, suggesting the importance of surface chemistry and particle composition to the efficiency of chelator-free radiolabeling. Such 89 Zr-WS2 /WOx (0.4)-PEG nanodots are found to be an excellent PET contrast agent for in vivo imaging of tumors upon intravenous administration, or mapping of draining lymph nodes after local injection.


Asunto(s)
Quelantes/química , Nanopartículas/química , Óxidos/química , Tomografía de Emisión de Positrones/métodos , Radioisótopos/química , Sulfuros/química , Circonio/química , Animales , Línea Celular Tumoral , Femenino , Ganglios Linfáticos/patología , Ratones Endogámicos BALB C , Nanopartículas/ultraestructura
15.
Eur J Nucl Med Mol Imaging ; 43(12): 2169-2179, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27342417

RESUMEN

PURPOSE: Overexpression of CD146 in solid tumors has been linked to disease progression, invasion, and metastasis. We describe the generation of a 64Cu-labeled CD146-specific antibody and its use for quantitative immunoPET imaging of CD146 expression in six lung cancer models. METHODS: The anti-CD146 antibody (YY146) was conjugated to 1,4,7-triazacyclononane-triacetic acid (NOTA) and radiolabeled with 64Cu. CD146 expression was evaluated in six human lung cancer cell lines (A549, NCI-H358, NCI-H522, HCC4006, H23, and NCI-H460) by flow cytometry and quantitative western blot studies. The biodistribution and tumor uptake of 64Cu-NOTA-YY146 was assessed by sequential PET imaging in athymic nude mice bearing subcutaneous lung cancer xenografts. The correlation between CD146 expression and tumor uptake of 64Cu-NOTA-YY146 was evaluated by graphical software while ex vivo biodistribution and immunohistochemistry studies were performed to validate the accuracy of PET data and spatial expression of CD146. RESULTS: Flow cytometry and western blot studies showed similar findings with H460 and H23 cells showing high levels of expression of CD146. Small differences in CD146 expression levels were found among A549, H4006, H522, and H358 cells. Tumor uptake of 64Cu-NOTA-YY146 was highest in CD146-expressing H460 and H23 tumors, peaking at 20.1 ± 2.86 and 11.6 ± 2.34 %ID/g at 48 h after injection (n = 4). Tumor uptake was lowest in the H522 model (4.1 ± 0.98 %ID/g at 48 h after injection; n = 4), while H4006, A549 and H358 exhibited similar uptake of 64Cu-NOTA-YY146. A positive correlation was found between tumor uptake of 64Cu-NOTA-YY146 (%ID/g) and relative CD146 expression (r 2 = 0.98, p < 0.01). Ex vivo biodistribution confirmed the accuracy of the PET data. CONCLUSION: The strong correlation between tumor uptake of 64Cu-NOTA-YY146 and CD146 expression demonstrates the potential use of this radiotracer for imaging tumors that elicit varying levels of CD146. In the future, this tool may promote enhanced monitoring of therapeutic response and improved patient stratification.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Complejos de Coordinación/inmunología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/inmunología , Péptidos/inmunología , Tomografía de Emisión de Positrones/métodos , Animales , Antígeno CD146/inmunología , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Imagen Molecular/métodos , Radiofármacos/inmunología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Mol Pharm ; 13(1): 8-24, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26620581

RESUMEN

Development of novel imaging probes for cancer diagnostics remains critical for early detection of disease, yet most imaging agents are hindered by suboptimal tumor accumulation. To overcome these limitations, researchers have adapted antibodies for imaging purposes. As cancerous malignancies express atypical patterns of cell surface proteins in comparison to noncancerous tissues, novel antibody-based imaging agents can be constructed to target individual cancer cells or surrounding vasculature. Using molecular imaging techniques, these agents may be utilized for detection of malignancies and monitoring of therapeutic response. Currently, there are several imaging modalities commonly employed for molecular imaging. These imaging modalities include positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance (MR) imaging, optical imaging (fluorescence and bioluminescence), and photoacoustic (PA) imaging. While antibody-based imaging agents may be employed for a broad range of diseases, this review focuses on the molecular imaging of pancreatic cancer, as there are limited resources for imaging and treatment of pancreatic malignancies. Additionally, pancreatic cancer remains the most lethal cancer with an overall 5-year survival rate of approximately 7%, despite significant advances in the imaging and treatment of many other cancers. In this review, we discuss recent advances in molecular imaging of pancreatic cancer using antibody-based imaging agents. This task is accomplished by summarizing the current progress in each type of molecular imaging modality described above. Also, several considerations for designing and synthesizing novel antibody-based imaging agents are discussed. Lastly, the future directions of antibody-based imaging agents are discussed, emphasizing the potential applications for personalized medicine.


Asunto(s)
Anticuerpos , Imagen Molecular/métodos , Neoplasias Pancreáticas/diagnóstico , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Tomografía Computarizada de Emisión de Fotón Único
17.
Mol Pharm ; 13(7): 2563-70, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27280694

RESUMEN

Recently, the overexpression of CD146 and its potential as a therapeutic target in high-grade gliomas, the most lethal type of brain cancer, was uncovered. In this study, we describe the generation of (89)Zr-Df-YY146, a novel (89)Zr-labeled monoclonal antibody (mAb) for the targeting and quantification of CD146 expression in a mouse model of glioblastoma, using noninvasive immunoPET imaging. YY146, a high affinity anti-CD146 mAb, was conjugated to deferoxamine (Df) for labeling with the long-lived positron emitter (89)Zr (t1/2: 78.4 h). In vitro assays, including flow cytometry, immunofluorescence microscopy, and Western blot, were performed with two glioblastoma cell lines, U87MG and U251, to determine their CD146 expression levels. Also, YY146 and Df-YY146's CD146-binding affinities were compared using flow cytometry. In vivo CD146-targeting of (89)Zr-Df-YY146 was evaluated by sequential PET imaging, in athymic nude mice bearing subcutaneously implanted U87MG or U251 tumors. CD146 blocking, ex vivo biodistribution, and histological studies were carried out to confirm (89)Zr-Df-YY146 specificity, as well as the accuracy of PET data. In vitro studies exposed elevated CD146 expression levels in U87MG cells, but negligible levels in U251 cells. Flow cytometry revealed no differences in affinity between YY146 and Df-YY146. (89)Zr labeling of Df-YY146 proceeded with excellent yield (∼80%), radiochemical purity (>95%), and specific activity (∼44 GBq/µmol). Longitudinal PET revealed prominent and persistent (89)Zr-Df-YY146 uptake in mice bearing U87MG tumors that peaked at 14.00 ± 3.28%ID/g (n = 4), 48 h post injection of the tracer. Conversely, uptake was significantly lower in CD146-negative U251 tumors (5.15 ± 0.99%ID/g, at 48 h p.i.; n = 4; P < 0.05). Uptake in U87MG tumors was effectively blocked in a competitive inhibition experiment, corroborating the CD146 specificity of (89)Zr-Df-YY146. Finally, ex vivo biodistribution validated the accuracy of PET data and histological examination successfully correlated tracer uptake with in situ CD146 expression. Prominent, persistent, and specific uptake of (89)Zr-Df-YY146 was observed in brain tumors, demonstrating the potential of this radiotracer for noninvasive PET imaging of CD146 expression. In a future clinical scenario, (89)Zr-Df-YY146 may serve as a tool to guide intervention and assess response to CD146-targeted therapies.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Antígeno CD146/metabolismo , Tomografía de Emisión de Positrones/métodos , Anticuerpos Monoclonales/metabolismo , Western Blotting , Línea Celular Tumoral , Citometría de Flujo , Humanos , Microscopía Confocal , Microscopía Fluorescente , Radioquímica
18.
Mol Pharm ; 13(6): 1958-66, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27054683

RESUMEN

The role of insulin-like growth factor-1 receptor (IGF-1R) in cancer tumorigenesis was established decades ago, yet there are limited studies evaluating the imaging and therapeutic properties of anti-IGF-1R antibodies. Noninvasive imaging of IGF-1R may allow for optimized patient stratification and monitoring of therapeutic response in patients. Herein, this study reports the development of a Zirconium-89 ((89)Zr)-labeled anti-IGF-1R antibody ((89)Zr-Df-1A2G11) for PET imaging of pancreatic cancer. Successful chelation and radiolabeling of the antibody resulted in a highly stable construct that could be used for imaging IGF-1R expressing tumors in vivo. Western blot and flow cytometry studies showed that MIA PaCa-2, BxPC-3, and AsPC-1 pancreatic cancer cell lines expressed high, moderate, and low levels of IGF-1R, respectively. These three pancreatic cancer cell lines were subcutaneously implanted into mice. By employing the PET imaging technique, the tumor accumulation of (89)Zr-Df-1A2G11 was found to be dependent on the level of IGF-1R expression. Tumor accumulation of (89)Zr-Df-1A2G11 was 8.24 ± 0.51, 5.80 ± 0.54, and 4.30 ± 0.42 percentage of the injected dose (%ID/g) in MIA PaCa-2, BxPC-3, and AsPC-1-derived tumor models at 120 h postinjection, respectively (n = 4). Biodistribution studies and ex vivo immunohistochemistry confirmed these findings. In addition, (89)Zr-labeled nonspecific human IgG ((89)Zr-Df-IgG) displayed minimal uptake in IGF-1R positive MIA PaCa-2 tumor xenografts (3.63 ± 0.95%ID/g at 120 h postinjection; n = 4), demonstrating that (89)Zr-Df-1A2G11 accumulation was highly specific. This study provides initial evidence that our (89)Zr-labeled IGF-1R-targeted antibody may be employed for imaging a wide range of malignancies. Antibodies may be tracked in vivo for several days to weeks with (89)Zr, which may enhance image contrast due to decreased background signal. In addition, the principles outlined in this study can be employed for identifying patients that may benefit from anti-IGF-1R therapy.


Asunto(s)
Neoplasias Pancreáticas/metabolismo , Receptor IGF Tipo 1/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunohistoquímica/métodos , Ratones , Ratones Desnudos , Tomografía de Emisión de Positrones/métodos , Radioisótopos/metabolismo , Distribución Tisular/fisiología , Circonio/metabolismo
19.
Bioconjug Chem ; 26(10): 2118-24, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26317429

RESUMEN

(52)Mn (t1/2 = 5.59 d, ß(+) = 29.6%, Eßave = 0.24 MeV) shows promise in positron emission tomography (PET) and in dual-modality manganese-enhanced magnetic resonance imaging (MEMRI) applications including neural tractography, stem cell tracking, and biological toxicity studies. The extension to bioconjugate application requires high-specific-activity (52)Mn in a state suitable for macromolecule labeling. To that end a (52)Mn production, purification, and labeling system is presented, and its applicability in preclinical, macromolecule PET is shown using the conjugate (52)Mn-DOTA-TRC105. (52)Mn is produced by 60 µA, 16 MeV proton irradiation of natural chromium metal pressed into a silver disc support. Radiochemical separation proceeds by strong anion exchange chromatography of the dissolved Cr target, employing a semiorganic mobile phase, 97:3 (v:v) ethanol:HCl (11 M, aqueous). The method is 62 ± 14% efficient (n = 7) in (52)Mn recovery, leading to a separation factor from Cr of (1.6 ± 1.0) × 10(6) (n = 4), and an average effective specific activity of 0.8 GBq/µmol (n = 4) in titration against DOTA. (52)Mn-DOTA-TRC105 conjugation and labeling demonstrate the potential for chelation applications. In vivo images acquired using PET/CT in mice bearing 4T1 xenograft tumors are presented. Peak tumor uptake is 18.7 ± 2.7%ID/g at 24 h post injection and ex vivo (52)Mn biodistribution validates the in vivo PET data. Free (52)Mn(2+) (as chloride or acetate) is used as a control in additional mice to evaluate the nontargeted biodistribution in the tumor model.


Asunto(s)
Marcaje Isotópico/métodos , Manganeso/química , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Animales , Anticuerpos Monoclonales/química , Cromo/química , Femenino , Compuestos Heterocíclicos con 1 Anillo/química , Imagen por Resonancia Magnética/métodos , Manganeso/farmacocinética , Ratones Endogámicos BALB C , Radioquímica/métodos , Radioisótopos/química , Radioisótopos/farmacocinética , Radiofármacos/farmacocinética , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Eur J Nucl Med Mol Imaging ; 42(12): 1859-68, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26016906

RESUMEN

PURPOSE: Our goal was to demonstrate that suitably derivatized monomeric RGD peptide-based PET tracers, targeting integrin αvß3, may offer advantages in image contrast, time for imaging, and low uptake in nontarget tissues. METHODS: Two cyclic RGDfK derivatives, (PEG)2-c(RGDfK) and PEG4-SAA4-c(RGDfK), were constructed and conjugated to NOTA for (64)Cu labeling. Their integrin αvß3-binding properties were determined via a competitive cell binding assay. Mice bearing U87MG tumors were intravenously injected with each of the (64)Cu-labeled peptides, and PET scans were acquired during the first 30 min, and 2 and 4 h after injection. Blocking and ex vivo biodistribution studies were carried out to validate the PET data and confirm the specificity of the tracers. RESULTS: The IC50 values of NOTA-(PEG)2-c(RGDfK) and NOTA-PEG4-SAA4-c(RGDfK) were 444 ± 41 nM and 288 ± 66 nM, respectively. Dynamic PET data of (64)Cu-NOTA-(PEG)2-c(RGDfK) and (64)Cu-NOTA-PEG4-SAA4-c(RGDfK) showed similar circulation t 1/2 and peak tumor uptake of about 4 %ID/g for both tracers. Due to its marked hydrophilicity, (64)Cu-NOTA-PEG4-SAA4-c(RGDfK) provided faster clearance from tumor and normal tissues yet maintained excellent tumor-to-background ratios. Static PET scans at later time-points corroborated the enhanced excretion of the tracer, especially from abdominal organs. Ex vivo biodistribution and receptor blocking studies confirmed the accuracy of the PET data and the integrin αvß3-specificity of the peptides. CONCLUSION: Our two novel RGD-based radiotracers with optimized pharmacokinetic properties allowed fast, high-contrast PET imaging of tumor-associated integrin αvß3. These tracers may facilitate the imaging of abdominal malignancies, normally precluded by high background uptake.


Asunto(s)
Radioisótopos de Cobre , Integrina alfaVbeta3/metabolismo , Oligopéptidos , Tomografía de Emisión de Positrones/métodos , Animales , Unión Competitiva , Línea Celular Tumoral , Estabilidad de Medicamentos , Femenino , Humanos , Marcaje Isotópico , Masculino , Ratones , Oligopéptidos/química , Oligopéptidos/metabolismo , Oligopéptidos/farmacocinética , Trazadores Radiactivos , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA