Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioinformatics ; 40(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696761

RESUMEN

SUMMARY: PlasCAT (Plasmid Cloud Assembly Tool) is an easy-to-use cloud-based bioinformatics tool that enables de novo plasmid sequence assembly from raw sequencing data. Nontechnical users can now assemble sequences from long reads and short reads without ever touching a line of code. PlasCAT uses high-performance computing servers to reduce run times on assemblies and deliver results faster. AVAILABILITY AND IMPLEMENTATION: PlasCAT is freely available on the web at https://sequencing.genofab.com. The assembly pipeline source code and server code are available for download at https://bitbucket.org/genofabinc/workspace/projects/PLASCAT. Click the Cancel button to access the source code without authenticating. Web servers implemented in React.js and Python, with all major browsers supported.


Asunto(s)
Plásmidos , Programas Informáticos , Plásmidos/genética , Nube Computacional , Biología Computacional/métodos , Análisis de Secuencia de ADN/métodos , Internet
2.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38585828

RESUMEN

Despite the wide use of plasmids in research and clinical production, the need to verify plasmid sequences is a bottleneck that is too often underestimated in the manufacturing process. Although sequencing platforms continue to improve, the method and assembly pipeline chosen still influence the final plasmid assembly sequence. Furthermore, few dedicated tools exist for plasmid assembly, especially for de novo assembly. Here, we evaluated short-read, long-read, and hybrid (both short and long reads) de novo assembly pipelines across three replicates of a 24-plasmid library. Consistent with previous characterizations of each sequencing technology, short-read assemblies had issues resolving GC-rich regions, and long-read assemblies commonly had small insertions and deletions, especially in repetitive regions. The hybrid approach facilitated the most accurate, consistent assembly generation and identified mutations relative to the reference sequence. Although Sanger sequencing can be used to verify specific regions, some GC-rich and repetitive regions were difficult to resolve using any method, suggesting that easily sequenced genetic parts should be prioritized in the design of new genetic constructs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA