Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 13(12): e0209067, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30576355

RESUMEN

Ginkgo biloba (EGb761) is a widely used botanical drug. Several reports indicate that EGb761 confers preventive as well as anti-tumorigenic properties in a variety of tumors, including hepatocellular carcinoma (HCC). We here evaluate functional effects and molecular alterations induced by EGb761 in hepatoma cells and non-malignant hepatocytes. Hepatoma cell lines, primary human HCC cells and immortalized human hepatocytes (IH) were exposed to various concentrations (0-1000 µg/ml) of EGb761. Apoptosis and proliferation were evaluated after 72h of EGb761 exposure. Response to oxidative stress, tumorigenic properties and molecular changes were further investigated. While anti-oxidant effects were detected in all cell lines, EGb761 promoted anti-proliferative and pro-apoptotic effects mainly in hepatoma cells. Consistently, EGb761 treatment caused a significant reduction in colony and sphere forming ability in hepatoma cells and no mentionable changes in IH. Transcriptomic changes involved oxidative stress response as well as key oncogenic pathways resembling Nrf2- and mTOR signaling pathway. Taken together, EGb761 induces differential effects in non-transformed and cancer cells. While treatment confers protective effects in non-malignant cells, EGb761 significantly impairs tumorigenic properties in cancer cells by affecting key oncogenic pathways. Results provide the rational for clinical testing of EGb761 in preventive and therapeutic strategies in human liver diseases.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Ginkgo biloba/química , Extractos Vegetales/farmacología , Transcriptoma/efectos de los fármacos , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular , Proliferación Celular/efectos de los fármacos , Ginkgo biloba/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
2.
Pathol Res Pract ; 206(7): 450-7, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20403671

RESUMEN

E-cadherin is one of the critical molecules involved in the metastatic process in many types of cancer. Once combined, E-cadherin exceeds the amount of membranous E-cadherin on the cellular surface by activation of intracellular signaling cascades. Studies on transformed keratinocytes of the HaCat cell line showed induction of differentiation by synthetical partial structures of the homophilic binding region of E-cadherin. The knowledge of effects in lung cancer cells is sparse. Therefore, the effects in primary lung cancer cell lines were investigated. Four primary lung cancer cell lines were incubated for 3, 6, 12, 15, 18, and 24h with synthetic partial structures (peptide and glycopeptide). The control substance was sodium butyrate. mRNA was isolated, and relative quantification of E-cadherin was performed using the Real-Time PCR. During the stimulation period, morphologic pictures were taken, and immunohistochemical staining of membranous E-cadherin was performed. Life/dead assays were used to display cell vitality. The intracellular E-cadherin mRNA amount was increased after incubation with the synthetic partial structures. Life/dead assays showed improved survival and integrated cell/cell bindings after stimulation with the partial structures. Increased cell mortality was revealed after sodium butyrate incubation. An effect mediated via E-cadherin on the cellular surface is proposed. The two synthetic partial structures of the homophilic binding region of E-cadherin increased the intracellular E-cadherin mRNA amount, cell-cell bindings, and survival of the tumor cells. Extracellular binding by synthetic partial structures to the binding region may have a beneficial influence on tumor progression in the metastatic process.


Asunto(s)
Cadherinas/metabolismo , Diferenciación Celular/fisiología , Glicopéptidos/metabolismo , Neoplasias Pulmonares/metabolismo , Cadherinas/química , Línea Celular Tumoral , Supervivencia Celular/fisiología , Glicopéptidos/química , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/química , Estructura Terciaria de Proteína , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA