Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 33(40)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34983030

RESUMEN

The ability to create metallic patterned nanostructures with excellent control of size, shape and spatial orientation is of utmost importance in the construction of next-generation electronic and optical devices as well as in other applications such as (bio)sensors, reactive surfaces for catalysis, etc. Moreover, development of simple, rapid and low-cost fabrication processes of metallic patterned nanostructures is a challenging issue for the incorporation of such devices in real market applications. In this contribution, a direct-write method that results in highly conducting palladium-based nanopatterned structures without the need of applying subsequent curing processes is presented. Spin-coated films of palladium acetate were irradiated with an electron beam to produce palladium nanodeposits (PdNDs) with controlled size, shape and height. The use of different electron doses was investigated and its influence on the PdNDs features determined, namely: (1) thickness of the deposits, (2) atomic percentage of palladium content, (3) oxidation state of palladium in the deposit, (4) morphology of the sample and grain size of the Pd nanocrystals and (5) resistivity. It has been probed that the use of high electron doses, 30000µC cm-2results in the lowest resistivity reported to date for PdNDs, namely 145µΩ cm, which is only one order of magnitude higher than bulk palladium. This result paves the way for development of simplified lithography processes of nanostructured deposits avoiding subsequent post-treatment steps.

2.
Nanoscale ; 16(14): 7093-7101, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38497989

RESUMEN

Pyrazole derivatives are key in crystal engineering and liquid crystal fields and thrive in agriculture, pharmaceutical, or biomedicine industries. Such versatility relies in their supramolecular bond adaptability when forming hydrogen bonds or metal-pyrazole complexes. Interestingly, the precise structure of pyrazole-based macrocycles forming widespread porous structures is still unsolved. We bring insight into such fundamental question by studying the self-assembled structures of a bis-pyrazole derivative sublimed in ultra-high-vacuum conditions (without solvents) onto the three (111) noble metal surfaces. By means of high-resolution scanning tunneling microscopy that is validated by gas phase density functional theory calculations, we find a common hexagonal nanoporous network condensed by triple hydrogen bonds at the molecule-metal interface. Such assembly is disrupted and divergent after annealing: (i) on copper, the molecular integrity is compromised leading to structural chaos, (ii) on silver, an incommensurate new oblique structure requiring molecular deprotonation is found and, (iii) on gold, metal-organic complexes are promoted yielding irregular chain structures. Our findings confirm the critical role of these metals on the different pyrazole nanoporous structure formation, discarding their preference for metal incorporation into the connecting nodes whenever there is no solvent involved.

3.
ACS Appl Mater Interfaces ; 14(24): 28211-28220, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35671475

RESUMEN

Metallic nanopatterns are ubiquitous in applications that exploit the electrical conduction at the nanoscale, including interconnects, electrical nanocontacts, and small gaps between metallic pads. These metallic nanopatterns can be designed to show additional physical properties (optical transparency, plasmonic effects, ferromagnetism, superconductivity, heat evacuation, etc.). For these reasons, an intense search for novel lithography methods using uncomplicated processes represents a key on-going issue in the achievement of metallic nanopatterns with high resolution and high throughput. In this contribution, we introduce a simple methodology for the efficient decomposition of Pd3(OAc)6 spin-coated thin films by means of a focused Ga+ beam, which results in metallic-enriched Pd nanostructures. Remarkably, the usage of a charge dose as low as 30 µC/cm2 is sufficient to fabricate structures with a metallic Pd content above 50% (at.) exhibiting low electrical resistivity (70 µΩ·cm). Binary-collision-approximation simulations provide theoretical support to this experimental finding. Such notable behavior is used to provide three proof-of-concept applications: (i) creation of electrical contacts to nanowires, (ii) fabrication of small (40 nm) gaps between large metallic contact pads, and (iii) fabrication of large-area metallic meshes. The impact across several fields of the direct decomposition of spin-coated organometallic films by focused ion beams is discussed.

4.
Nanoscale ; 11(16): 7976-7985, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30968913

RESUMEN

Well-ordered, tightly-packed (surface coverage 0.97 × 10-9 mol cm-2) monolayer films of 1,4-bis((4-ethynylphenyl)ethynyl)benzene (1) on gold are prepared via a simple self-assembly process, taking advantage of the ready formation of alkynyl C-Au σ-bonds. Electrochemical measurements using [Ru(NH3)6]3+, [Fe(CN)6]3-, and ferrocenylmethanol [Fe(η5-C5H4CH2OH)(η5-C5H5)] redox probes indicate that the alkynyl C-Au contacted monolayer of 1 presents a relatively low barrier for electron transfer. This contrasts with monolayer films on gold of other oligo(phenylene ethynylene) derivatives of comparable length and surface coverage, but with different contacting groups. Additionally, a low voltage transition (Vtrans = 0.51 V) from direct tunneling (rectangular barrier) to field emission (triangular barrier) is observed. This low transition voltage points to a low tunneling barrier, which is consistent with the facile electron transport observed through the C-Au contacted self-assembled monolayer of 1.

5.
Nanoscale ; 9(35): 13281-13290, 2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28858363

RESUMEN

Nascent metal|monolayer|metal devices have been fabricated by depositing palladium, produced through a CO-confined growth method, onto a self-assembled monolayer of an amine-terminated oligo(phenylene ethynylene) derivative on a gold bottom electrode. The high surface area coverage (85%) of the organic monolayer by densely packed palladium particles was confirmed by X-ray photoemission spectroscopy (XPS) and atomic force microscopy (AFM). The electrical properties of these nascent Au|monolayer|Pd assemblies were determined from the I-V curves recorded with a conductive-AFM using the Peak Force Tunneling AFM (PF-TUNA™) mode. The I-V curves together with the electrochemical experiments performed rule out the formation of short-circuits due to palladium penetration through the monolayer, suggesting that the palladium deposition strategy is an effective method for the fabrication of molecular junctions without damaging the organic layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA