Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(4): 6168-6177, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439326

RESUMEN

In situ tunable photonic filters and memories are important for emerging quantum and classical optics technologies. However, most photonic devices have fixed resonances and bandwidths determined at the time of fabrication. Here we present an in situ tunable optical resonator on thin-film lithium niobate. By leveraging the linear electro-optic effect, we demonstrate widely tunable control over resonator frequency and bandwidth on two different devices. We observe up to ∼50 × tuning in the bandwidth over ∼50 V with linear frequency control of ∼230 MHz/V. We also develop a closed-form model predicting the tuning behavior of the device. This paves the way for rapid phase and amplitude control over light transmitted through our device.

2.
Opt Express ; 30(13): 23177-23186, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36225003

RESUMEN

Integrated photonics operating at visible-near-infrared (VNIR) wavelengths offer scalable platforms for advancing optical systems for addressing atomic clocks, sensors, and quantum computers. The complexity of free-space control optics causes limited addressability of atoms and ions, and this remains an impediment on scalability and cost. Networks of Mach-Zehnder interferometers can overcome challenges in addressing atoms by providing high-bandwidth electro-optic control of multiple output beams. Here, we demonstrate a VNIR Mach-Zehnder interferometer on lithium niobate on sapphire with a CMOS voltage-level compatible full-swing voltage of 4.2 V and an electro-optic bandwidth of 2.7 GHz occupying only 0.35 mm2. Our waveguides exhibit 1.6 dB/cm propagation loss and our microring resonators have intrinsic quality factors of 4.4 × 105. This specialized platform for VNIR integrated photonics can open new avenues for addressing large arrays of qubits with high precision and negligible cross-talk.

3.
Phys Rev Lett ; 126(19): 193901, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34047603

RESUMEN

It has been demonstrated that dynamic refractive-index modulation, which breaks time-reversal symmetry, can be used to create on-chip nonreciprocal photonic devices. In order to achieve amplitude nonreciprocity, all such devices moreover require modulations that break spatial symmetries, which adds complexity in implementations. Here we introduce a modal circulator, which achieves amplitude nonreciprocity through a circulation motion among three modes. We show that such a circulator can be achieved in a dynamically modulated structure that preserves mirror symmetry, and as a result can be implemented using only a single standing-wave modulator, which significantly simplifies the implementation of dynamically modulated nonreciprocal devices. We also prove that in terms of the number of modes involved in the transport process, the modal circulator represents the minimum configuration in which complete amplitude nonreciprocity can be achieved while preserving spatial symmetry.

4.
Nat Commun ; 13(1): 4532, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927246

RESUMEN

Second-order nonlinear optical processes convert light from one wavelength to another and generate quantum entanglement. Creating chip-scale devices to efficiently control these interactions greatly increases the reach of photonics. Existing silicon-based photonic circuits utilize the third-order optical nonlinearity, but an analogous integrated platform for second-order nonlinear optics remains an outstanding challenge. Here we demonstrate efficient frequency doubling and parametric oscillation with a threshold of tens of micro-watts in an integrated thin-film lithium niobate photonic circuit. We achieve degenerate and non-degenerate operation of the parametric oscillator at room temperature and tune its emission over one terahertz by varying the pump frequency by hundreds of megahertz. Finally, we observe cascaded second-order processes that result in parametric oscillation. These resonant second-order nonlinear circuits will form a crucial part of the emerging nonlinear and quantum photonics platforms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA