Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Trends Biochem Sci ; 48(1): 71-81, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35981931

RESUMEN

Interactions between microorganisms are often mediated by specialized metabolites. Although the structures and biosynthesis of these compounds may have been elucidated, microbes exist within complex microbiomes and chemical signals can thus also be subject to community-dependent modifications. Increasingly powerful chemical and biological tools allow to shed light on this poorly understood aspect of chemical ecology. We provide an overview of loss-of-function and gain-of-function chemical mediator (CM) modifications within microbial multipartner relationships. Although loss-of-function modifications are abundant in the literature, few gain-of-function modifications have been described despite their important role in microbial interactions. Research in this field holds great potential for our understanding of microbial interactions and may also provide novel tools for targeted interference with microbial signaling.


Asunto(s)
Microbiota
2.
Proc Natl Acad Sci U S A ; 121(15): e2401632121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568970

RESUMEN

Photosynthetic protists, known as microalgae, are key contributors to primary production on Earth. Since early in evolution, they coexist with bacteria in nature, and their mode of interaction shapes ecosystems. We have recently shown that the bacterium Pseudomonas protegens acts algicidal on the microalga Chlamydomonas reinhardtii. It secretes a cyclic lipopeptide and a polyyne that deflagellate, blind, and lyse the algae [P. Aiyar et al., Nat. Commun. 8, 1756 (2017) and V. Hotter et al., Proc. Natl. Acad. Sci. U.S.A. 118, e2107695118 (2021)]. Here, we report about the bacterium Mycetocola lacteus, which establishes a mutualistic relationship with C. reinhardtii and acts as a helper. While M. lacteus enhances algal growth, it receives methionine as needed organic sulfur and the vitamins B1, B3, and B5 from the algae. In tripartite cultures with the alga and the antagonistic bacterium P. protegens, M. lacteus aids the algae in surviving the bacterial attack. By combining synthetic natural product chemistry with high-resolution mass spectrometry and an algal Ca2+ reporter line, we found that M. lacteus rescues the alga from the antagonistic bacterium by cleaving the ester bond of the cyclic lipopeptide involved. The resulting linearized seco acid does not trigger a cytosolic Ca2+ homeostasis imbalance that leads to algal deflagellation. Thus, the algae remain motile, can swim away from the antagonistic bacteria and survive the attack. All three involved genera cooccur in nature. Remarkably, related species of Pseudomonas and Mycetocola also act antagonistically against C. reinhardtii or as helper bacteria in tripartite cultures.


Asunto(s)
Chlamydomonas reinhardtii , Ecosistema , Bacterias , Eucariontes , Lipopéptidos
3.
Annu Rev Microbiol ; 74: 267-290, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32660387

RESUMEN

Interactions among microbes are key drivers of evolutionary progress and constantly shape ecological niches. Microorganisms rely on chemical communication to interact with each other and surrounding organisms. They synthesize natural products as signaling molecules, antibiotics, or modulators of cellular processes that may be applied in agriculture and medicine. Whereas major insight has been gained into the principles of intraspecies interaction, much less is known about the molecular basis of interspecies interplay. In this review, we summarize recent progress in the understanding of chemically mediated bacterial-fungal interrelations. We discuss pairwise interactions among defined species and systems involving additional organisms as well as complex interactions among microbial communities encountered in the soil or defined as microbiota of higher organisms. Finally, we give examples of how the growing understanding of microbial interactions has contributed to drug discovery and hypothesize what may be future directions in studying and engineering microbiota for agricultural or medicinal purposes.


Asunto(s)
Bacterias/metabolismo , Productos Biológicos/metabolismo , Hongos/metabolismo , Interacciones Microbianas/fisiología , Microbiota/fisiología , Metabolismo Secundario , Microbiología del Suelo
4.
Chembiochem ; 25(3): e202300732, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37917130

RESUMEN

Natural products bearing isothiocyanate (ITC) groups are an important group of specialized metabolites that play various roles in health, nutrition, and ecology. Whereas ITC biosynthesis via glucosinolates in plants has been studied in detail, there is a gap in understanding the bacterial route to specialized metabolites with such reactive heterocumulene groups, as in the antifungal sinapigladioside from Burkholderia gladioli. Here we propose an alternative ITC pathway by enzymatic sulfur transfer onto isonitriles catalyzed by rhodanese-like enzymes (thiosulfate:cyanide sulfurtransferases). Mining the B. gladioli genome revealed six candidate genes (rhdA-F), which were individually expressed in E. coli. By means of a synthetic probe, the gene products were evaluated for their ability to produce the key ITC intermediate in the sinapigladioside pathway. In vitro biotransformation assays identified RhdE, a prototype single-domain rhodanese, as the most potent ITC synthase. Interestingly, while RhdE also efficiently transforms cyanide into thiocyanate, it shows high specificity for the natural pathway intermediate, indicating that the sinapigladioside pathway has recruited a ubiquitous detoxification enzyme for the formation of a bioactive specialized metabolite. These findings not only elucidate an elusive step in bacterial ITC biosynthesis but also reveal a new function of rhodanese-like enzymes in specialized metabolism.


Asunto(s)
Escherichia coli , Tiosulfato Azufretransferasa , Tiosulfato Azufretransferasa/genética , Tiosulfato Azufretransferasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sulfurtransferasas/metabolismo , Isotiocianatos , Azufre , Cianuros/metabolismo , Catálisis
5.
Chemistry ; 30(27): e202400605, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38421111

RESUMEN

The regioselective synthesis of biphenyls, which are economically important pharmaceuticals, agrochemicals, and liquid crystals, is a challenging task. Current methods rely on metal-dependent cross-coupling reactions, which unfortunately require the use of harmful halogenated aryls and heavy metal catalysts that are toxic and difficult to remove from the final products. Recently, we have circumvented these problems by developing a metal-free and broadly applicable photochemical method for biphenyl synthesis using UV-C light, called photosplicing. Here we present an improved method using photosensitizers in combination with UV-B, UV-A light, or sunlight. Using a high-precision flow reactor with deep-UV LEDs, we investigated the ability of commonly available organic photosensitizers to enhance the photosplicing reaction and identified a number of suitable photosensitizers with the required triplet energy. This method allows for easy batch synthesis of biaryls in borosilicate glassware and paves the way for their large-scale production without the need for flow reactors.

6.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34740967

RESUMEN

Photosynthetic microorganisms including the green alga Chlamydomonas reinhardtii are essential to terrestrial habitats as they start the carbon cycle by conversion of CO2 to energy-rich organic carbohydrates. Terrestrial habitats are densely populated, and hence, microbial interactions mediated by natural products are inevitable. We previously discovered such an interaction between Streptomyces iranensis releasing the marginolactone azalomycin F in the presence of C. reinhardtii Whether the alga senses and reacts to azalomycin F remained unknown. Here, we report that sublethal concentrations of azalomycin F trigger the formation of a protective multicellular structure by C. reinhardtii, which we named gloeocapsoid. Gloeocapsoids contain several cells which share multiple cell membranes and cell walls and are surrounded by a spacious matrix consisting of acidic polysaccharides. After azalomycin F removal, gloeocapsoid aggregates readily disassemble, and single cells are released. The presence of marginolactone biosynthesis gene clusters in numerous streptomycetes, their ubiquity in soil, and our observation that other marginolactones such as desertomycin A and monazomycin also trigger the formation of gloeocapsoids suggests a cross-kingdom competition with ecological relevance. Furthermore, gloeocapsoids allow for the survival of C. reinhardtii at alkaline pH and otherwise lethal concentrations of azalomycin F. Their structure and polysaccharide matrix may be ancestral to the complex mucilage formed by multicellular members of the Chlamydomonadales such as Eudorina and Volvox Our finding suggests that multicellularity may have evolved to endure the presence of harmful competing bacteria. Additionally, it underlines the importance of natural products as microbial cues, which initiate interesting ecological scenarios of attack and counter defense.


Asunto(s)
Agregación Celular , Chlamydomonas reinhardtii/fisiología , Chlamydomonas reinhardtii/ultraestructura , Macrólidos/metabolismo , Interacciones Microbianas , Streptomyces/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34504005

RESUMEN

Fungi of the genus Mortierella occur ubiquitously in soils where they play pivotal roles in carbon cycling, xenobiont degradation, and promoting plant growth. These important fungi are, however, threatened by micropredators such as fungivorous nematodes, and yet little is known about their protective tactics. We report that Mortierella verticillata NRRL 6337 harbors a bacterial endosymbiont that efficiently shields its host from nematode attacks with anthelmintic metabolites. Microscopic investigation and 16S ribosomal DNA analysis revealed that a previously overlooked bacterial symbiont belonging to the genus Mycoavidus dwells in M. verticillata hyphae. Metabolic profiling of the wild-type fungus and a symbiont-free strain obtained by antibiotic treatment as well as genome analyses revealed that highly cytotoxic macrolactones (CJ-12,950 and CJ-13,357, syn necroxime C and D), initially thought to be metabolites of the soil-inhabiting fungus, are actually biosynthesized by the endosymbiont. According to comparative genomics, the symbiont belongs to a new species (Candidatus Mycoavidus necroximicus) with 12% of its 2.2 Mb genome dedicated to natural product biosynthesis, including the modular polyketide-nonribosomal peptide synthetase for necroxime assembly. Using Caenorhabditis elegans and the fungivorous nematode Aphelenchus avenae as test strains, we show that necroximes exert highly potent anthelmintic activities. Effective host protection was demonstrated in cocultures of nematodes with symbiotic and chemically complemented aposymbiotic fungal strains. Image analysis and mathematical quantification of nematode movement enabled evaluation of the potency. Our work describes a relevant role for endofungal bacteria in protecting fungi against mycophagous nematodes.


Asunto(s)
Antihelmínticos/farmacología , Burkholderiaceae/fisiología , Lactonas/farmacología , Metagenoma , Mortierella/fisiología , Nematodos/efectos de los fármacos , Simbiosis , Animales , Genómica , Redes y Vías Metabólicas , Mortierella/efectos de los fármacos , Nematodos/patogenicidad , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Filogenia , Microbiología del Suelo
8.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34389682

RESUMEN

Algae are key contributors to global carbon fixation and form the basis of many food webs. In nature, their growth is often supported or suppressed by microorganisms. The bacterium Pseudomonas protegens Pf-5 arrests the growth of the green unicellular alga Chlamydomonas reinhardtii, deflagellates the alga by the cyclic lipopeptide orfamide A, and alters its morphology [P. Aiyar et al., Nat. Commun. 8, 1756 (2017)]. Using a combination of Raman microspectroscopy, genome mining, and mutational analysis, we discovered a polyyne toxin, protegencin, which is secreted by P. protegens, penetrates the algal cells, and causes destruction of the carotenoids of their primitive visual system, the eyespot. Together with secreted orfamide A, protegencin thus prevents the phototactic behavior of C. reinhardtii A mutant of P. protegens deficient in protegencin production does not affect growth or eyespot carotenoids of C. reinhardtii Protegencin acts in a direct and destructive way by lysing and killing the algal cells. The toxic effect of protegencin is also observed in an eyeless mutant and with the colony-forming Chlorophyte alga Gonium pectorale These data reveal a two-pronged molecular strategy involving a cyclic lipopeptide and a conjugated tetrayne used by bacteria to attack select Chlamydomonad algae. In conjunction with the bloom-forming activity of several chlorophytes and the presence of the protegencin gene cluster in over 50 different Pseudomonas genomes [A. J. Mullins et al., bioRxiv [Preprint] (2021). https://www.biorxiv.org/content/10.1101/2021.03.05.433886v1 (Accessed 17 April 2021)], these data are highly relevant to ecological interactions between Chlorophyte algae and Pseudomonadales bacteria.


Asunto(s)
Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidad , Chlamydomonas reinhardtii/efectos de los fármacos , Pseudomonas/metabolismo , Carotenoides , Técnicas de Cocultivo , Genoma Bacteriano
9.
Angew Chem Int Ed Engl ; 63(4): e202309284, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737720

RESUMEN

Enzymes are increasingly recognized as valuable (bio)catalysts that complement existing synthetic methods. However, the range of biotransformations used in the laboratory is limited. Here we give an overview on the biosynthesis-inspired discovery of novel biocatalysts that address various synthetic challenges. Prominent examples from this dynamic field highlight remarkable enzymes for protecting-group-free amide formation and modification, control of pericyclic reactions, stereoselective hetero- and polycyclizations, atroposelective aryl couplings, site-selective C-H activations, introduction of ring strain, and N-N bond formation. We also explore unusual functions of cytochrome P450 monooxygenases, radical SAM-dependent enzymes, flavoproteins, and enzymes recruited from primary metabolism, which offer opportunities for synthetic biology, enzyme engineering, directed evolution, and catalyst design.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Ingeniería de Proteínas , Biocatálisis , Sistema Enzimático del Citocromo P-450/metabolismo , Catálisis , Biotransformación , Enzimas/metabolismo
10.
Angew Chem Int Ed Engl ; : e202404243, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747847

RESUMEN

6-Thioguanine (6TG) is a clinically used antitumor agent that was rationally designed as a DNA-targeting antimetabolite, but it also occurs naturally. 6TG is a critical virulence factor produced by Erwinia amylovorans, a notorious plant pathogen that causes fire blight of pome fruit trees. The biosynthesis of the rare thioamide metabolite involves an adenylating enzyme (YcfA) and a sulfur-mobilizing enzyme (YcfC), but the mechanism of sulfur transfer and putative intermediates have remained elusive. Through dissection and in vitro reconstitution of the thionation process using diverse substrates, we uncover an intermediate, prodrug-like thio-conjugate and elucidate the precise enzyme functions. YcfA not only adenylates GMP but also transfers the mercapto group of l-cysteine to the activated carbonyl. A designated C-S lyase (YcfC) then cleaves the resulting S-adduct to yield the thioamide. This pathway is distinct from canonical tRNA sulfur modifications and known enzymatic peptide thionations. By exploring a wide range of substrate surrogates, we exploited the tolerance of the enzyme pair to produce even a seleno analog. This study provides valuable insight into a previously unexplored area of bacterial thioamide formation and lays the groundwork for synthetic biology approaches to produce thioamide antimetabolites.

11.
Angew Chem Int Ed Engl ; 63(30): e202405165, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728443

RESUMEN

Various nonribosomal peptide synthetases (NRPSs) create structural and functional diversity by incorporating α-hydroxy acids into peptide backbones. Trigonic acid, an unusual cyclopropanol-substituted hydroxy acid, is the source of the molecular warhead of malleicyprol, a critical virulence factor of human and animal pathogens of the Burkholderia pseudomallei (BP) group. The process of selecting and loading this building block remained enigmatic as the NRPS module designated for this task is incomplete. Using a combination of bioinformatics, mutational analyses, targeted metabolomics, and in vitro biochemical assays, we show that two trans-acting enzymes are required to load this central building block onto the modular assembly line. An adenylation-thiolation didomain enzyme (BurJ) activates trigonic acid, followed by the translocation of the enzyme-bound α-hydroxy acid thioester by an FkbH-like protein with a mutated phosphatase domain (BurH). This specialized gateway is the first reported direct loading of an α-hydroxy acid onto a bona fide NRPS module in bacteria and expands the synthetic biology toolbox for the site-specific incorporation of non-canonical building blocks. Moreover, insight into the biochemical basis of virulence factor biosynthesis can provide a foundation for developing enzyme inhibitors as anti-virulence therapeutics against BP pathogen infections.


Asunto(s)
Hidroxiácidos , Péptido Sintasas , Péptido Sintasas/metabolismo , Hidroxiácidos/metabolismo , Hidroxiácidos/química , Burkholderia pseudomallei/enzimología , Burkholderia pseudomallei/metabolismo
12.
Angew Chem Int Ed Engl ; 63(9): e202315850, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38134222

RESUMEN

Modular polyketide synthases (PKSs) are giant assembly lines that produce an impressive range of biologically active compounds. However, our understanding of the structural dynamics of these megasynthases, specifically the delivery of acyl carrier protein (ACP)-bound building blocks to the catalytic site of the ketosynthase (KS) domain, remains severely limited. Using a multipronged structural approach, we report details of the inter-domain interactions after C-C bond formation in a chain-branching module of the rhizoxin PKS. Mechanism-based crosslinking of an engineered module was achieved using a synthetic substrate surrogate that serves as a Michael acceptor. The crosslinked protein allowed us to identify an asymmetric state of the dimeric protein complex upon C-C bond formation by cryo-electron microscopy (cryo-EM). The possible existence of two ACP binding sites, one of them a potential "parking position" for substrate loading, was also indicated by AlphaFold2 predictions. NMR spectroscopy showed that a transient complex is formed in solution, independent of the linker domains, and photochemical crosslinking/mass spectrometry of the standalone domains allowed us to pinpoint the interdomain interaction sites. The structural insights into a branching PKS module arrested after C-C bond formation allows a better understanding of domain dynamics and provides valuable information for the rational design of modular assembly lines.


Asunto(s)
Proteína Transportadora de Acilo , Sintasas Poliquetidas , Sintasas Poliquetidas/metabolismo , Microscopía por Crioelectrón , Sitios de Unión , Dominio Catalítico , Proteína Transportadora de Acilo/metabolismo
13.
Angew Chem Int Ed Engl ; 63(23): e202401195, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38529534

RESUMEN

The cosmopolitan marine Roseobacter clade is of global biogeochemical importance. Members of this clade produce sulfur-containing amino lipids (SALs) involved in biofilm formation and marine surface colonization processes. Despite their physiological relevance and abundance, SALs have only been explored through genomic mining approaches and lipidomic studies based on mass spectrometry, which left the relative and absolute structures of SALs unresolved, hindering progress in biochemical and functional investigations. Herein, we report the structural revision of a new group of SALs, which we named cysteinolides, using a combination of analytical techniques, isolation and degradation experiments and total synthetic efforts. Contrary to the previously proposed homotaurine-based structures, cysteinolides are composed of an N,O-acylated cysteinolic acid-containing head group carrying various different (α-hydroxy)carboxylic acids. We also performed the first validated targeted-network based analysis, which allowed us to map the distribution and structural diversity of cysteinolides across bacterial lineages. Beyond offering structural insight, our research provides SAL standards and validated analytical data. This information holds significance for forthcoming investigations into bacterial sulfonolipid metabolism and biogeochemical nutrient cycling within marine environments.


Asunto(s)
Lípidos , Lípidos/química , Roseobacter/metabolismo , Roseobacter/química , Estructura Molecular , Organismos Acuáticos/química
14.
J Am Chem Soc ; 145(4): 2342-2353, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36669196

RESUMEN

Investigating the ecological context of microbial predator-prey interactions enables the identification of microorganisms, which produce multiple secondary metabolites to evade predation or to kill the predator. In addition, genome mining combined with molecular biology methods can be used to identify further biosynthetic gene clusters that yield new antimicrobials to fight the antimicrobial crisis. In contrast, classical screening-based approaches have limitations since they do not aim to unlock the entire biosynthetic potential of a given organism. Here, we describe the genomics-based identification of keanumycins A-C. These nonribosomal peptides enable bacteria of the genus Pseudomonas to evade amoebal predation. While being amoebicidal at a nanomolar level, these compounds also exhibit a strong antimycotic activity in particular against the devastating plant pathogen Botrytis cinerea and they drastically inhibit the infection of Hydrangea macrophylla leaves using only supernatants of Pseudomonas cultures. The structures of the keanumycins were fully elucidated through a combination of nuclear magnetic resonance, tandem mass spectrometry, and degradation experiments revealing an unprecedented terminal imine motif in keanumycin C extending the family of nonribosomal amino acids by a highly reactive building block. In addition, chemical synthesis unveiled the absolute configuration of the unusual dihydroxylated fatty acid of keanumycin A, which has not yet been reported for this lipodepsipeptide class. Finally, a detailed genome-wide microarray analysis of Candida albicans exposed to keanumycin A shed light on the mode-of-action of this potential natural product lead, which will aid the development of new pharmaceutical and agrochemical antifungals.


Asunto(s)
Antiinfecciosos , Lipopéptidos , Lipopéptidos/farmacología , Lipopéptidos/química , Aminoácidos/genética , Antifúngicos/farmacología , Antifúngicos/metabolismo , Genómica , Familia de Multigenes
15.
Chembiochem ; 24(17): e202300322, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37191164

RESUMEN

Various human pathogens have emerged from environmental strains by adapting to higher growth temperatures and the ability to produce virulence factors. A remarkable example of a pathoadapted bacterium is found in the genus Luteibacter, which typically comprises harmless soil microbes, yet Luteibacter anthropi was isolated from the blood of a diseased child. Up until now, nothing has been known about the specialized metabolism of this pathogen. By comparative genome analyses we found that L. anthropi has a markedly higher biosynthetic potential than other bacteria of this genus and uniquely bears an NRPS gene locus tentatively coding for the biosynthesis of a metallophore. By metabolic profiling, stable isotope labeling, and NMR investigation of a gallium complex, we identified a new family of salicylate-derived nonribosomal peptides named anthrochelins A-D. Surprisingly, anthrochelins feature a C-terminal homocysteine tag, which might be introduced during peptide termination. Mutational analyses provided insight into the anthrochelin assembly and revealed the unexpected involvement of a cytochrome P450 monooxygenase in oxazole formation. Notably, this heterocycle plays a key role in the binding of metals, especially copper(II). Bioassays showed that anthrochelin significantly promotes the growth of L. anthropi in the presence of low and high copper concentrations, which occur during infections.


Asunto(s)
Bacterias , Cobre , Niño , Humanos , Factores de Virulencia , Metabolómica
16.
Chembiochem ; 24(21): e202300511, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37614035

RESUMEN

Psilocybe "magic mushrooms" are chemically well understood for their psychotropic tryptamines. However, the diversity of their other specialized metabolites, in particular terpenoids, has largely remained an open question. Yet, knowledge on the natural product background is critical to understand if other compounds modulate the psychotropic pharmacological effects. CubA, the single clade II sesquiterpene synthase of P. cubensis, was heterologously produced in Escherichia coli and characterized in vitro, complemented by in vivo product formation assays in Aspergillus niger as a heterologous host. Extensive GC-MS analyses proved a function as multi-product synthase and, depending on the reaction conditions, cubebol, ß-copaene, δ-cadinene, and germacrene D were detected as the major products of CubA. In addition, mature P. cubensis carpophores were analysed chromatographically which led to the detection of ß-copaene and δ-cadinene. Enzymes closely related to CubA are encoded in the genomes of various Psilocybe species. Therefore, our results provide insight into the metabolic capacity of the entire genus.


Asunto(s)
Transferasas Alquil y Aril , Psilocybe , Sesquiterpenos , Psilocybe/metabolismo , Sesquiterpenos/química , Transferasas Alquil y Aril/genética
17.
Proc Natl Acad Sci U S A ; 117(38): 23802-23806, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32868430

RESUMEN

The bacterial pathogen Pseudomonas tolaasii severely damages white button mushrooms by secretion of the pore-forming toxin tolaasin, the main virulence factor of brown blotch disease. Yet, fungus-associated helper bacteria of the genus Mycetocola (Mycetocola tolaasinivorans and Mycetocola lacteus) may protect their host by an unknown detoxification mechanism. By a combination of metabolic profiling, imaging mass spectrometry, structure elucidation, and bioassays, we found that the helper bacteria inactivate tolaasin by linearizing the lipocyclopeptide. Furthermore, we found that Mycetocola spp. impair the dissemination of the pathogen by cleavage of the lactone ring of pseudodesmin. The role of pseudodesmin as a major swarming factor was corroborated by identification and inactivation of the corresponding biosynthetic gene cluster. Activity-guided fractionation of the Mycetocola proteome, matrix-assisted laser desorption/ionization (MALDI) analyses, and heterologous enzyme production identified the lactonase responsible for toxin cleavage. We revealed an antivirulence strategy in the context of a tripartite interaction that has high ecological and agricultural relevance.


Asunto(s)
Actinobacteria , Agaricus , Proteínas Bacterianas , Depsipéptidos , Pseudomonas , Factores de Virulencia , Actinobacteria/química , Actinobacteria/enzimología , Actinobacteria/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Depsipéptidos/química , Depsipéptidos/metabolismo , Lipopéptidos/química , Lipopéptidos/metabolismo , Proteoma , Pseudomonas/química , Pseudomonas/patogenicidad , Factores de Virulencia/química , Factores de Virulencia/metabolismo
18.
Proc Natl Acad Sci U S A ; 117(16): 8850-8858, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32265283

RESUMEN

Closthioamide (CTA) is a rare example of a thioamide-containing nonribosomal peptide and is one of only a handful of secondary metabolites described from obligately anaerobic bacteria. Although the biosynthetic gene cluster responsible for CTA production and the thioamide synthetase that catalyzes sulfur incorporation were recently discovered, the logic for peptide backbone assembly has remained a mystery. Here, through the use of in vitro biochemical assays, we demonstrate that the amide backbone of CTA is assembled in an unusual thiotemplated pathway involving the cooperation of a transacylating member of the papain-like cysteine protease family and an iteratively acting ATP-grasp protein. Using the ATP-grasp protein as a bioinformatic handle, we identified hundreds of such thiotemplated yet nonribosomal peptide synthetase (NRPS)-independent biosynthetic gene clusters across diverse bacterial phyla. The data presented herein not only clarify the pathway for the biosynthesis of CTA, but also provide a foundation for the discovery of additional secondary metabolites produced by noncanonical biosynthetic pathways.


Asunto(s)
Antibacterianos/metabolismo , Bacterias Anaerobias/enzimología , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos/genética , Tioamidas/metabolismo , Adenosina Trifosfato/metabolismo , Bacterias Anaerobias/genética , Proteínas Bacterianas/genética , Sitios de Unión , Vías Biosintéticas/genética , Biología Computacional , Cisteína Endopeptidasas/genética , Genes Bacterianos , Familia de Multigenes , Metabolismo Secundario/genética
19.
Angew Chem Int Ed Engl ; 62(42): e202308540, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37650335

RESUMEN

Rhizonin A and B are hepatotoxic cyclopeptides produced by bacterial endosymbionts (Mycetohabitans endofungorum) of the fungus Rhizopus microsporus. Their toxicity critically depends on the presence of 3-furylalanine (Fua) residues, which also occur in pharmaceutically relevant cyclopeptides of the endolide and bingchamide families. The biosynthesis and incorporation of Fua by non-ribosomal peptide synthetases (NRPS), however, has remained elusive. By genome sequencing and gene inactivation we elucidated the gene cluster responsible for rhizonin biosynthesis. A suite of isotope labeling experiments identified tyrosine and l-DOPA as Fua precursors and provided the first mechanistic insight. Bioinformatics, mutational analysis and heterologous reconstitution identified dioxygenase RhzB as necessary and sufficient for Fua formation. RhzB is a novel type of heme-dependent aromatic oxygenases (HDAO) that enabled the discovery of the bingchamide biosynthesis gene cluster through genome mining.


Asunto(s)
Biología Computacional , Péptidos Cíclicos , Humanos , Péptidos Cíclicos/química , Familia de Multigenes , Hongos/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/metabolismo
20.
Nat Prod Rep ; 39(1): 163-205, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34622896

RESUMEN

Review covering up to mid-2021The structure of polyketide and non-ribosomal peptide natural products is strongly influenced by how they are released from their biosynthetic enzymes. As such, Nature has evolved a diverse range of release mechanisms, leading to the formation of bioactive chemical scaffolds such as lactones, lactams, diketopiperazines, and tetronates. Here, we review the enzymes and mechanisms used for chain release in polyketide and non-ribosomal peptide biosynthesis, how these mechanisms affect natural product structure, and how they could be utilised to introduce structural diversity into the products of engineered biosynthetic pathways.


Asunto(s)
Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Policétidos/metabolismo , Vías Biosintéticas , Ingeniería Metabólica , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA