Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 183(7): 1946-1961.e15, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33306960

RESUMEN

Lymphocyte migration is essential for adaptive immune surveillance. However, our current understanding of this process is rudimentary, because most human studies have been restricted to immunological analyses of blood and various tissues. To address this knowledge gap, we used an integrated approach to characterize tissue-emigrant lineages in thoracic duct lymph (TDL). The most prevalent immune cells in human and non-human primate efferent lymph were T cells. Cytolytic CD8+ T cell subsets with effector-like epigenetic and transcriptional signatures were clonotypically skewed and selectively confined to the intravascular circulation, whereas non-cytolytic CD8+ T cell subsets with stem-like epigenetic and transcriptional signatures predominated in tissues and TDL. Moreover, these anatomically distinct gene expression profiles were recapitulated within individual clonotypes, suggesting parallel differentiation programs independent of the expressed antigen receptor. Our collective dataset provides an atlas of the migratory immune system and defines the nature of tissue-emigrant CD8+ T cells that recirculate via TDL.


Asunto(s)
Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Animales , Diferenciación Celular , Células Clonales , Citotoxicidad Inmunológica , Epigénesis Genética , Humanos , Memoria Inmunológica , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Macaca mulatta , Subgrupos de Linfocitos T/inmunología , Transcripción Genética , Transcriptoma/genética
2.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33479167

RESUMEN

Dendritic cells (DCs) and monocytes are crucial mediators of innate and adaptive immune responses during viral infection, but misdirected responses by these cells may contribute to immunopathology. Here, we performed high-dimensional flow cytometry-analysis focusing on mononuclear phagocyte (MNP) lineages in SARS-CoV-2-infected patients with moderate and severe COVID-19. We provide a deep and comprehensive map of the MNP landscape in COVID-19. A redistribution of monocyte subsets toward intermediate monocytes and a general decrease in circulating DCs was observed in response to infection. Severe disease coincided with the appearance of monocytic myeloid-derived suppressor cell-like cells and a higher frequency of pre-DC2. Furthermore, phenotypic alterations in MNPs, and their late precursors, were cell-lineage-specific and associated either with the general response against SARS-CoV-2 or COVID-19 severity. This included an interferon-imprint in DC1s observed in all patients and a decreased expression of the coinhibitory molecule CD200R in pre-DCs, DC2s, and DC3 subsets of severely sick patients. Finally, unsupervised analysis revealed that the MNP profile, alone, pointed to a cluster of COVID-19 nonsurvivors. This study provides a reference for the MNP response to SARS-CoV-2 infection and unravels mononuclear phagocyte dysregulations associated with severe COVID-19.


Asunto(s)
COVID-19/inmunología , Sistema Mononuclear Fagocítico/inmunología , SARS-CoV-2/inmunología , Adulto , COVID-19/epidemiología , COVID-19/metabolismo , COVID-19/virología , Citocinas/inmunología , Células Dendríticas/inmunología , Femenino , Humanos , Interferones/inmunología , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Sistema Mononuclear Fagocítico/metabolismo , Índice de Severidad de la Enfermedad , Suecia
3.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34548411

RESUMEN

Since the outset of the COVID-19 pandemic, increasing evidence suggests that the innate immune responses play an important role in the disease development. A dysregulated inflammatory state has been proposed as a key driver of clinical complications in COVID-19, with a potential detrimental role of granulocytes. However, a comprehensive phenotypic description of circulating granulocytes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients is lacking. In this study, we used high-dimensional flow cytometry for granulocyte immunophenotyping in peripheral blood collected from COVID-19 patients during acute and convalescent phases. Severe COVID-19 was associated with increased levels of both mature and immature neutrophils, and decreased counts of eosinophils and basophils. Distinct immunotypes were evident in COVID-19 patients, with altered expression of several receptors involved in activation, adhesion, and migration of granulocytes (e.g., CD62L, CD11a/b, CD69, CD63, CXCR4). Paired sampling revealed recovery and phenotypic restoration of the granulocytic signature in the convalescent phase. The identified granulocyte immunotypes correlated with distinct sets of soluble inflammatory markers, supporting pathophysiologic relevance. Furthermore, clinical features, including multiorgan dysfunction and respiratory function, could be predicted using combined laboratory measurements and immunophenotyping. This study provides a comprehensive granulocyte characterization in COVID-19 and reveals specific immunotypes with potential predictive value for key clinical features associated with COVID-19.


Asunto(s)
COVID-19/inmunología , Granulocitos/inmunología , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/fisiopatología , Granulocitos/citología , Humanos , Inmunidad Innata , Inmunofenotipificación , Recuento de Leucocitos , Pulmón/fisiopatología , Modelos Biológicos , Puntuaciones en la Disfunción de Órganos , SARS-CoV-2 , Índice de Severidad de la Enfermedad
4.
Eur J Immunol ; 52(3): 503-510, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34837225

RESUMEN

Corona disease 2019 (COVID-19) affects multiple organ systems. Recent studies have indicated perturbations in the circulating metabolome linked to COVID-19 severity. However, several questions pertain with respect to the metabolome in COVID-19. We performed an in-depth assessment of 1129 unique metabolites in 27 hospitalized COVID-19 patients and integrated results with large-scale proteomic and immunology data to capture multiorgan system perturbations. More than half of the detected metabolic alterations in COVID-19 were driven by patient-specific confounding factors ranging from comorbidities to xenobiotic substances. Systematically adjusting for this, a COVID-19-specific metabolic imprint was defined which, over time, underwent a switch in response to severe acute respiratory syndrome coronavirus-2 seroconversion. Integration of the COVID-19 metabolome with clinical, cellular, molecular, and immunological severity scales further revealed a network of metabolic trajectories aligned with multiple pathways for immune activation, and organ damage including neurological inflammation and damage. Altogether, this resource refines our understanding of the multiorgan system perturbations in severe COVID-19 patients.


Asunto(s)
COVID-19/inmunología , COVID-19/metabolismo , Metaboloma/inmunología , SARS-CoV-2 , Adolescente , Adulto , Anciano , COVID-19/complicaciones , Estudios de Casos y Controles , Enfermedades del Sistema Nervioso Central/etiología , Enfermedades del Sistema Nervioso Central/inmunología , Enfermedades del Sistema Nervioso Central/metabolismo , Estudios de Cohortes , Femenino , Humanos , Masculino , Metabolómica , Persona de Mediana Edad , Especificidad de Órganos , Pandemias , Fenotipo , Proteómica , Índice de Severidad de la Enfermedad , Adulto Joven
5.
Hepatology ; 75(5): 1154-1168, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34719787

RESUMEN

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a malignancy arising from biliary epithelial cells of intra- and extrahepatic bile ducts with dismal prognosis and few nonsurgical treatments available. Despite recent success in the immunotherapy-based treatment of many tumor types, this has not been successfully translated to CCA. Mucosal-associated invariant T (MAIT) cells are cytotoxic innate-like T cells highly enriched in the human liver, where they are located in close proximity to the biliary epithelium. Here, we aimed to comprehensively characterize MAIT cells in intrahepatic (iCCA) and perihilar CCA (pCCA). APPROACH AND RESULTS: Liver tissue from patients with CCA was used to study immune cells, including MAIT cells, in tumor-affected and surrounding tissue by immunohistochemistry, RNA-sequencing, and multicolor flow cytometry. The iCCA and pCCA tumor microenvironment was characterized by the presence of both cytotoxic T cells and high numbers of regulatory T cells. In contrast, MAIT cells were heterogenously lost from tumors compared to the surrounding liver tissue. This loss possibly occurred in response to increased bacterial burden within tumors. The residual intratumoral MAIT cell population exhibited phenotypic and transcriptomic alterations, but a preserved receptor repertoire for interaction with tumor cells. Finally, the high presence of MAIT cells in livers of iCCA patients predicted long-term survival in two independent cohorts and was associated with a favorable antitumor immune signature. CONCLUSIONS: MAIT cell tumor infiltration associates with favorable immunological fitness and predicts survival in CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Conductos Biliares Extrahepáticos , Colangiocarcinoma , Células T Invariantes Asociadas a Mucosa , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Extrahepáticos/patología , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/patología , Humanos , Microambiente Tumoral
6.
Scand J Immunol ; : e13195, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35652743

RESUMEN

The Karolinska KI/K COVID-19 Immune Atlas project was conceptualized in March 2020 as a part of the academic research response to the developing SARS-CoV-2 pandemic. The aim was to rapidly provide a curated dataset covering the acute immune response towards SARS-CoV-2 infection in humans, as it occurred during the first wave. The Immune Atlas was built as an open resource for broad research and educational purposes. It contains a presentation of the response evoked by different immune and inflammatory cells in defined naïve patient-groups as they presented with moderate and severe COVID-19 disease. The present Resource Article describes how the Karolinska KI/K COVID-19 Immune Atlas allow scientists, students, and other interested parties to freely explore the nature of the immune response towards human SARS-CoV-2 infection in an online setting.

7.
Gastroenterology ; 157(4): 1067-1080.e9, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31229495

RESUMEN

BACKGROUND & AIMS: Bile duct tumors are rare and have poor prognoses. Natural killer (NK) cells are frequent in human liver and infiltrate these tumors but do not control their progression. Responses of NK cells are regulated by NK immunoglobulin-like receptors (KIRs), which interact with HLA class I ligands. We aimed to characterize the features of the KIR gene loci and their ligands in patients with bile duct cancer (BDC). METHODS: We performed combined multidimensional characterization of genes that encode KIRs and their ligands in blood samples from patients with BDC from Sweden, followed for up to 8 years after diagnosis (n = 148), in 2 geographically matched cohorts of healthy individuals from Northern Europe (n = 204 and n = 900), and in healthy individuals from 6 geographically unrelated populations (n = 2917). We used real-time polymerase chain reaction, RNA sequencing, immunohistochemistry, and flow cytometry to evaluate NK-cell presence, as well as KIR and KIR-ligand expression in bile duct tumors and control tissues. RESULTS: Patients with bile duct tumors had multiple alterations at the KIR gene loci. KIR loci are grouped into genotypes that encode more inhibitory (group A) and more activating (group B) receptors, which can be subdivided into centromeric and telomeric fragments. Patients with BDC had a lower prevalence of KIR2DL3, which was linked to disequilibrium in centromeric A/B and B/B genotypes, compared with control individuals. The associations between KIRs and KIR ligands differed between patients with BDC and control individuals; patients had an altered balance between activating and inhibitory KIRs. KIR-positive NK cells infiltrated biliary tumors that expressed matched KIR ligands. CONCLUSIONS: In a multidimensional analysis of DNA from blood samples of patients with BDC in Europe, we found patients to have multiple alterations at the KIR and HLA gene loci compared with control individuals. These alterations might affect NK-cell tumor surveillance. NK cells from bile duct tumors expressed KIRs and were found in tumors that expressed cognate ligands. This should be considered in development of immune-based therapies for BDC.


Asunto(s)
Neoplasias de los Conductos Biliares/genética , Antígenos HLA/genética , Células Asesinas Naturales/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Receptores KIR/genética , Anciano , Anciano de 80 o más Años , Asia , Neoplasias de los Conductos Biliares/sangre , Neoplasias de los Conductos Biliares/inmunología , Neoplasias de los Conductos Biliares/patología , Estudios de Casos y Controles , Europa (Continente) , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Antígenos HLA/sangre , Antígenos HLA/inmunología , Humanos , Células Asesinas Naturales/patología , Ligandos , Desequilibrio de Ligamiento , Linfocitos Infiltrantes de Tumor/patología , Masculino , Persona de Mediana Edad , América del Norte , Fenotipo , Pronóstico , Receptores KIR/sangre , Receptores KIR/inmunología , Receptores KIR2DL3/genética , Receptores KIR2DL3/inmunología , Factores de Riesgo , América del Sur , Factores de Tiempo
8.
Eur J Immunol ; 46(8): 1984-96, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27325505

RESUMEN

Fractalkine receptor (CX3CR1)-deficient mice develop very severe experimental autoimmune encephalomyelitis (EAE), associated with impaired NK cell recruitment into the CNS. Yet, the precise implications of NK cells in autoimmune neuroinflammation remain elusive. Here, we investigated the pattern of NK cell mobilization and the contribution of CX3CR1 to NK cell dynamics in the EAE. We show that in both wild-type and CX3CR1-deficient EAE mice, NK cells are mobilized from the periphery and accumulate in the inflamed CNS. However, in CX3CR1-deficient mice, the infiltrated NK cells displayed an immature phenotype contrasting with the mature infiltrates in WT mice. This shift in the immature/mature CNS ratio contributes to EAE exacerbation in CX3CR1-deficient mice, since transfer of mature WT NK cells prior to immunization exerted a protective effect and normalized the CNS NK cell ratio. Moreover, mature CD11b(+) NK cells show higher degranulation in the presence of autoreactive 2D2 transgenic CD4(+) T cells and kill these autoreactive cells more efficiently than the immature CD11b(-) fraction. Together, these data suggest a protective role of mature NK cells in EAE, possibly through direct modulation of T cells inside the CNS, and demonstrate that mature and immature NK cells are recruited into the CNS by distinct chemotactic signals.


Asunto(s)
Sistema Nervioso Central/inmunología , Quimiocinas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Células Asesinas Naturales/inmunología , Receptores de Quimiocina/genética , Linfocitos T/inmunología , Animales , Receptor 1 de Quimiocinas CX3C , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
9.
Mult Scler ; 22(2): 160-73, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26540731

RESUMEN

BACKGROUND: In contrast to multiple sclerosis (MS), lesions in neuromyelitis optica (NMO) frequently contain neutrophils. However, the phenotypic profile of neutrophils in these two distinct pathologies remains unknown. OBJECTIVE: Our aim is to better understand the potential contribution of neutrophils to NMO and MS pathology. METHODS: We performed the first functional analysis of blood neutrophils in NMO and MS, including evaluation of neutrophil immune response (fMLP receptor, TLR2), chemotaxis and migration (CXCR1, CD62L, CD43), regulation of complement (CD46, CD55, CD59), respiratory burst, phagocytosis and degranulation. RESULTS: Compared with healthy controls (HC), neutrophils in NMO and MS show an activated phenotype characterized by an increased surface expression of TLR2 and fMLP receptor. However, contrary to MS neutrophils, NMO neutrophils show reduced adhesion and migratory capacity as well as decreased reduced production of reactive oxygen species (respiratory burst) and degranulation. CONCLUSION: Although NMO and MS neutrophils display an activated phenotype in comparison with HC, NMO neutrophils show a compromised functionality when compared with MS patients. These results suggest a distinct functional profile of neutrophils in MS and NMO.


Asunto(s)
Esclerosis Múltiple/inmunología , Neuromielitis Óptica/inmunología , Neutrófilos/inmunología , Adulto , Antígenos CD55/metabolismo , Antígenos CD59/metabolismo , Estudios de Casos y Controles , Degranulación de la Célula/inmunología , Quimiotaxis de Leucocito/inmunología , Femenino , Humanos , Inmunidad Innata/inmunología , Selectina L/metabolismo , Leucosialina/metabolismo , Masculino , Proteína Cofactora de Membrana/metabolismo , Persona de Mediana Edad , Esclerosis Múltiple/metabolismo , Neuromielitis Óptica/metabolismo , Neutrófilos/metabolismo , Fagocitosis/inmunología , Fenotipo , Receptores de Formil Péptido/metabolismo , Receptores de Interleucina-8A/metabolismo , Estallido Respiratorio , Receptor Toll-Like 2/metabolismo
10.
Proc Natl Acad Sci U S A ; 110(19): 7916-21, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23620518

RESUMEN

It is well-established that subcompartments of endoplasmic reticulum (ER) are in physical contact with the mitochondria. These lipid raft-like regions of ER are referred to as mitochondria-associated ER membranes (MAMs), and they play an important role in, for example, lipid synthesis, calcium homeostasis, and apoptotic signaling. Perturbation of MAM function has previously been suggested in Alzheimer's disease (AD) as shown in fibroblasts from AD patients and a neuroblastoma cell line containing familial presenilin-2 AD mutation. The effect of AD pathogenesis on the ER-mitochondria interplay in the brain has so far remained unknown. Here, we studied ER-mitochondria contacts in human AD brain and related AD mouse and neuronal cell models. We found uniform distribution of MAM in neurons. Phosphofurin acidic cluster sorting protein-2 and σ1 receptor, two MAM-associated proteins, were shown to be essential for neuronal survival, because siRNA knockdown resulted in degeneration. Up-regulated MAM-associated proteins were found in the AD brain and amyloid precursor protein (APP)Swe/Lon mouse model, in which up-regulation was observed before the appearance of plaques. By studying an ER-mitochondria bridging complex, inositol-1,4,5-triphosphate receptor-voltage-dependent anion channel, we revealed that nanomolar concentrations of amyloid ß-peptide increased inositol-1,4,5-triphosphate receptor and voltage-dependent anion channel protein expression and elevated the number of ER-mitochondria contact points and mitochondrial calcium concentrations. Our data suggest an important role of ER-mitochondria contacts and cross-talk in AD pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Receptor Cross-Talk , Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Células CHO , Calcio/metabolismo , Línea Celular Tumoral , Cricetinae , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Hipocampo/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato , Microdominios de Membrana/metabolismo , Ratones , Mutación , Neuronas/metabolismo , ARN Interferente Pequeño/metabolismo , Receptores sigma/metabolismo , Fracciones Subcelulares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Receptor Sigma-1
11.
Sci Transl Med ; 13(599)2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162753

RESUMEN

The human biliary system, a mucosal barrier tissue connecting the liver and intestine, is an organ often affected by serious inflammatory and malignant diseases. Although these diseases are linked to immunological processes, the biliary system represents an unexplored immunological niche. By combining endoscopy-guided sampling of the biliary tree with a high-dimensional analysis approach, comprehensive mapping of the human biliary immunological landscape in patients with primary sclerosing cholangitis (PSC), a severe biliary inflammatory disease, was conducted. Major differences in immune cell composition in bile ducts compared to blood were revealed. Furthermore, biliary inflammation in patients with PSC was characterized by high presence of neutrophils and T cells as compared to control individuals without PSC. The biliary T cells displayed a CD103+CD69+ effector memory phenotype, a combined gut and liver homing profile, and produced interleukin-17 (IL-17) and IL-22. Biliary neutrophil infiltration in PSC associated with CXCL8, possibly produced by resident T cells, and CXCL16 was linked to the enrichment of T cells. This study uncovers the immunological niche of human bile ducts, defines a local immune network between neutrophils and biliary-resident T cells in PSC, and provides a resource for future studies of the immune responses in biliary disorders.


Asunto(s)
Sistema Biliar , Colangitis Esclerosante , Humanos , Hígado , Neutrófilos , Linfocitos T
12.
Sci Immunol ; 5(50)2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32826343

RESUMEN

Understanding innate immune responses in COVID-19 is important to decipher mechanisms of host responses and interpret disease pathogenesis. Natural killer (NK) cells are innate effector lymphocytes that respond to acute viral infections but might also contribute to immunopathology. Using 28-color flow cytometry, we here reveal strong NK cell activation across distinct subsets in peripheral blood of COVID-19 patients. This pattern was mirrored in scRNA-seq signatures of NK cells in bronchoalveolar lavage from COVID-19 patients. Unsupervised high-dimensional analysis of peripheral blood NK cells furthermore identified distinct NK cell immunotypes that were linked to disease severity. Hallmarks of these immunotypes were high expression of perforin, NKG2C, and Ksp37, reflecting increased presence of adaptive NK cells in circulation of patients with severe disease. Finally, arming of CD56bright NK cells was observed across COVID-19 disease states, driven by a defined protein-protein interaction network of inflammatory soluble factors. This study provides a detailed map of the NK cell activation landscape in COVID-19 disease.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/inmunología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Células Asesinas Naturales/inmunología , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , Índice de Severidad de la Enfermedad , Inmunidad Adaptativa , Antígeno CD56/metabolismo , COVID-19 , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/patología , Femenino , Citometría de Flujo/métodos , Humanos , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Pandemias , Fenotipo , Neumonía Viral/sangre , Neumonía Viral/patología , Reacción en Cadena de la Polimerasa , Estudios Prospectivos , Mapas de Interacción de Proteínas/inmunología , Receptores KIR/metabolismo , SARS-CoV-2 , Pruebas Serológicas , Suecia/epidemiología
13.
Front Immunol ; 10: 2692, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798596

RESUMEN

Recent studies have demonstrated extraordinary diversity in peripheral blood human natural killer (NK) cells and have suggested environmental control of receptor expression patterns on distinct subsets of NK cells. However, tissue localization may influence NK cell differentiation to an even higher extent and less is known about the receptor repertoire of human tissue-resident NK cells. Advances in single-cell technologies have allowed higher resolution studies of these cells. Here, the power of high-dimensional flow cytometry was harnessed to unravel the complexity of NK cell repertoire diversity in liver since recent studies had indicated high heterogeneity within liver NK cells. A 29-color flow cytometry panel allowing simultaneous measurement of surface tissue-residency markers, activating and inhibitory receptors, differentiation markers, chemokine receptors, and transcription factors was established. This panel was applied to lymphocytes across three tissues (liver, peripheral blood, and tonsil) with different distribution of distinct NK cell subsets. Dimensionality reduction of this data ordered events according to their lineage, rather than tissue of origin. Notably, narrowing the scope of the analysis to the NK cell lineage in liver and peripheral blood separated subsets according to tissue, enabling phenotypic characterization of NK cell subpopulations in individual tissues. Such dimensionality reduction, coupled with a clustering algorithm, identified CD49e as the preferred marker for future studies of liver-resident NK cell subsets. We present a robust approach for diversity profiling of tissue-resident NK cells that can be applied in various homeostatic and pathological conditions such as reproduction, infection, and cancer.


Asunto(s)
Citometría de Flujo/métodos , Células Asesinas Naturales/citología , Hígado/citología , Antígenos CD/metabolismo , Color , Humanos , Células Asesinas Naturales/metabolismo , Hígado/inmunología , Tonsila Palatina/citología , Tonsila Palatina/inmunología , Fenotipo
14.
Front Immunol ; 10: 2337, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649664

RESUMEN

Innate lymphoid cells (ILCs) are tissue resident cells with organ-specific properties. Here, we show that the central nervous system (CNS) encompasses ILCs. In particular, CD3-NK1.1+ cells present in the murine CNS comprise natural killer (NK) cells, ILC1s, intermediate ILC1s (intILC1s) and ex-ILC3s. We investigated the properties of CNS-ILC1s in comparison with CNS-NK cells during steady state and experimental autoimmune encephalomyelitis (EAE). ILC1s characteristically express CXCR3, CXCR6, DNAM-1, TRAIL, and CD200R and display heightened TNF-α production upon stimulation. In addition, ILC1s express perforin and are able to degranulate, although in a lesser extent than NK cells. Within the CNS compartments, ILC1s are enriched in the choroid plexus where very few NK cells are present, and also reside in the brain parenchyma and meninges. During EAE, ILC1s maintain stable IFN-γ and TNF-α levels while in NK cells the production of these cytokines increases as EAE progresses. Moreover, the amount of ILC1s and intILC1s increase in the parenchyma during EAE, but in contrast to NK cells, they show no signs of local proliferation. The upregulation in the inflamed brain of chemokines involved in ILC1 migration, such as CXCL9, CXCL10, and CXCL16 may lead to a recruitment of ILC1s from meninges or choroid plexus into the brain parenchyma. In sum, CNS-ILC1 phenotype, distribution and moderate inflammatory response during EAE suggest that they may act as gatekeepers involved in the control of neuroinflammation.


Asunto(s)
Encéfalo/inmunología , Movimiento Celular/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Células Asesinas Naturales/inmunología , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/inmunología , Encéfalo/patología , Movimiento Celular/genética , Citocinas/genética , Citocinas/inmunología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Femenino , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Células Asesinas Naturales/patología , Ratones , Ratones Transgénicos
15.
PLoS One ; 10(6): e0130251, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26114502

RESUMEN

We previously demonstrated that epigallocatechin-3-gallate (EGCG) synergizes with the immunomodulatory agent glatiramer acetate (GA) in eliciting anti-inflammatory and neuroprotective effects in the relapsing-remitting EAE model. Thus, we hypothesized that mice with chronic EAE may also benefit from this combination therapy. We first assessed how a treatment with a single dose of GA together with daily application of EGCG may modulate EAE. Although single therapies with a suboptimal dose of GA or EGCG led to disease amelioration and reduced CNS inflammation, the combination therapy had no effects. While EGCG appeared to preserve axons and myelin, the single GA dose did not improve axonal damage or demyelination. Interestingly, the neuroprotective effect of EGCG was abolished when GA was applied in combination. To elucidate how a single dose of GA may interfere with EGCG, we focused on the anti-inflammatory, iron chelating and anti-oxidant properties of EGCG. Surprisingly, we observed that while EGCG induced a downregulation of the gene expression of heme oxygenase-1 (HO-1) in affected CNS areas, the combined therapy of GA+EGCG seems to promote an increased HO-1 expression. These data suggest that upregulation of HO-1 may contribute to diminish the neuroprotective benefits of EGCG alone in this EAE model. Altogether, our data indicate that neuroprotection by EGCG in chronic EAE may involve regulation of oxidative processes, including downmodulation of HO-1. Further investigation of the re-dox balance in chronic neuroinflammation and in particular functional studies on HO-1 are warranted to understand its role in disease progression.


Asunto(s)
Catequina/análogos & derivados , Regulación hacia Abajo/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Acetato de Glatiramer/farmacología , Hemo-Oxigenasa 1/biosíntesis , Proteínas de la Membrana/biosíntesis , Animales , Axones/enzimología , Axones/patología , Catequina/farmacología , Enfermedad Crónica , Encefalomielitis Autoinmune Experimental/enzimología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Ratones , Vaina de Mielina/enzimología , Vaina de Mielina/patología , Oxidación-Reducción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA