Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 46(1): 120-132, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28087238

RESUMEN

Lymphocytes circulate through lymph nodes (LN) in search for antigen in what is believed to be a continuous process. Here, we show that lymphocyte migration through lymph nodes and lymph occurred in a non-continuous, circadian manner. Lymphocyte homing to lymph nodes peaked at night onset, with cells leaving the tissue during the day. This resulted in strong oscillations in lymphocyte cellularity in lymph nodes and efferent lymphatic fluid. Using lineage-specific genetic ablation of circadian clock function, we demonstrated this to be dependent on rhythmic expression of promigratory factors on lymphocytes. Dendritic cell numbers peaked in phase with lymphocytes, with diurnal oscillations being present in disease severity after immunization to induce experimental autoimmune encephalomyelitis (EAE). These rhythms were abolished by genetic disruption of T cell clocks, demonstrating a circadian regulation of lymphocyte migration through lymph nodes with time-of-day of immunization being critical for adaptive immune responses weeks later.


Asunto(s)
Inmunidad Adaptativa/inmunología , Quimiotaxis de Leucocito/inmunología , Relojes Circadianos/inmunología , Vigilancia Inmunológica/inmunología , Linfocitos/inmunología , Traslado Adoptivo , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
PLoS Biol ; 21(6): e3002164, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37379316

RESUMEN

A defining property of circadian clocks is temperature compensation, characterized by the resilience of their near 24-hour free-running periods against changes in environmental temperature within the physiological range. While temperature compensation is evolutionary conserved across different taxa of life and has been studied within many model organisms, its molecular underpinnings remain elusive. Posttranscriptional regulations such as temperature-sensitive alternative splicing or phosphorylation have been described as underlying reactions. Here, we show that knockdown of cleavage and polyadenylation specificity factor subunit 6 (CPSF6), a key regulator of 3'-end cleavage and polyadenylation, significantly alters circadian temperature compensation in human U-2 OS cells. We apply a combination of 3'-end-RNA-seq and mass spectrometry-based proteomics to globally quantify changes in 3' UTR length as well as gene and protein expression between wild-type and CPSF6 knockdown cells and their dependency on temperature. Since changes in temperature compensation behavior should be reflected in alterations of temperature responses within one or all of the 3 regulatory layers, we statistically assess differential responses upon changes in ambient temperature between wild-type and CPSF6 knockdown cells. By this means, we reveal candidate genes underlying circadian temperature compensation, including eukaryotic translation initiation factor 2 subunit 1 (EIF2S1).


Asunto(s)
Relojes Circadianos , Animales , Humanos , Relojes Circadianos/genética , Ritmo Circadiano/genética , Mamíferos , Factores de Escisión y Poliadenilación de ARNm/genética , Fosforilación , Temperatura
3.
J Biol Chem ; 300(5): 107220, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522517

RESUMEN

Circadian rhythms are generated by complex interactions among genes and proteins. Self-sustained ∼24 h oscillations require negative feedback loops and sufficiently strong nonlinearities that are the product of molecular and network switches. Here, we review common mechanisms to obtain switch-like behavior, including cooperativity, antagonistic enzymes, multisite phosphorylation, positive feedback, and sequestration. We discuss how network switches play a crucial role as essential components in cellular circadian clocks, serving as integral parts of transcription-translation feedback loops that form the basis of circadian rhythm generation. The design principles of network switches and circadian clocks are illustrated by representative mathematical models that include bistable systems and negative feedback loops combined with Hill functions. This work underscores the importance of negative feedback loops and network switches as essential design principles for biological oscillations, emphasizing how an understanding of theoretical concepts can provide insights into the mechanisms generating biological rhythms.


Asunto(s)
Relojes Circadianos , Retroalimentación Fisiológica , Animales , Humanos , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Modelos Biológicos , Fosforilación , Modificación Traduccional de las Proteínas
4.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293208

RESUMEN

Circular RNAs (circRNAs) are a large class of relatively stable RNA molecules that are highly expressed in animal brains. Many circRNAs have been associated with CNS disorders accompanied by an aberrant wake-sleep cycle. However, the regulation of circRNAs in brain homeostasis over daily light-dark (LD) cycles has not been characterized. Here, we aim to quantify the daily expression changes of circRNAs in physiological conditions in healthy adult animals. Using newly generated and public RNA-Seq data, we monitored circRNA expression throughout the 12:12 h LD cycle in various mouse brain regions. We identified that Cdr1as, a conserved circRNA that regulates synaptic transmission, is highly expressed in the suprachiasmatic nucleus (SCN), the master circadian pacemaker. Despite its high stability, Cdr1as has a very dynamic expression in the SCN throughout the LD cycle, as well as a significant regulation in the hippocampus following the entry into the dark phase. Computational integration of different public datasets predicted that Cdr1as is important for regulating light entrainment in the SCN. We hypothesize that the expression changes of Cdr1as in the SCN, particularly during the dark phase, are associated with light-induced phase shifts. Importantly, our work revises the current beliefs about natural circRNA stability and suggests that the time component must be considered when studying circRNA regulation.


Asunto(s)
Fotoperiodo , ARN Circular , Ratones , Animales , ARN Circular/genética , Ritmo Circadiano/genética , Núcleo Supraquiasmático/metabolismo , Luz
5.
PLoS Comput Biol ; 15(9): e1007330, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31513579

RESUMEN

Circadian rhythms are generated by interlocked transcriptional-translational negative feedback loops (TTFLs), the molecular process implemented within a cell. The contributions, weighting and balancing between the multiple feedback loops remain debated. Dissociated, free-running dynamics in the expression of distinct clock genes has been described in recent experimental studies that applied various perturbations such as slice preparations, light pulses, jet-lag, and culture medium exchange. In this paper, we provide evidence that this "presumably transient" dissociation of circadian gene expression oscillations may occur at the single-cell level. Conceptual and detailed mechanistic mathematical modeling suggests that such dissociation is due to a weak interaction between multiple feedback loops present within a single cell. The dissociable loops provide insights into underlying mechanisms and general design principles of the molecular circadian clock.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Animales , Biología Computacional , Retroalimentación , Regulación de la Expresión Génica/genética , Humanos , Ratones , Modelos Genéticos , Análisis de la Célula Individual , Neuronas del Núcleo Supraquiasmático/citología
6.
PLoS Comput Biol ; 14(12): e1006607, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30532130

RESUMEN

Circadian clocks are autonomous oscillators driving daily rhythms in physiology and behavior. In mammals, a network of coupled neurons in the suprachiasmatic nucleus (SCN) is entrained to environmental light-dark cycles and orchestrates the timing of peripheral organs. In each neuron, transcriptional feedbacks generate noisy oscillations. Coupling mediated by neuropeptides such as VIP and AVP lends precision and robustness to circadian rhythms. The detailed coupling mechanisms between SCN neurons are debated. We analyze organotypic SCN slices from neonatal and adult mice in wild-type and multiple knockout conditions. Different degrees of rhythmicity are quantified by pixel-level analysis of bioluminescence data. We use empirical orthogonal functions (EOFs) to characterize spatio-temporal patterns. Simulations of coupled stochastic single cell oscillators can reproduce the diversity of observed patterns. Our combination of data analysis and modeling provides deeper insight into the enormous complexity of the data: (1) Neonatal slices are typically stronger oscillators than adult slices pointing to developmental changes of coupling. (2) Wild-type slices are completely synchronized and exhibit specific spatio-temporal patterns of phases. (3) Some slices of Cry double knockouts obey impaired synchrony that can lead to co-existing rhythms ("splitting"). (4) The loss of VIP-coupling leads to desynchronized rhythms with few residual local clusters. Additional information was extracted from co-culturing slices with rhythmic neonatal wild-type SCNs. These co-culturing experiments were simulated using external forcing terms representing VIP and AVP signaling. The rescue of rhythmicity via co-culturing lead to surprising results, since a cocktail of AVP-antagonists improved synchrony. Our modeling suggests that these counter-intuitive observations are pointing to an antagonistic action of VIP and AVP coupling. Our systematic theoretical and experimental study shows that dual coupling mechanisms can explain the astonishing complexity of spatio-temporal patterns in SCN slices.


Asunto(s)
Arginina Vasopresina/metabolismo , Ritmo Circadiano/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Animales , Arginina Vasopresina/fisiología , Relojes Circadianos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Neuropéptidos/metabolismo , Proteínas Circadianas Period/metabolismo , Transducción de Señal , Núcleo Supraquiasmático/fisiología , Péptido Intestinal Vasoactivo/fisiología
7.
Int J Mol Sci ; 20(9)2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31086108

RESUMEN

The circadian clock is an endogenous oscillator that controls daily rhythms in metabolism, physiology, and behavior. Although the timekeeping components differ among species, a common design principle is a transcription-translation negative feedback loop. However, it is becoming clear that other mechanisms can contribute to the generation of 24 h rhythms. Peroxiredoxins (Prxs) exhibit 24 h rhythms in their redox state in all kingdoms of life. In mammalian adrenal gland, heart and brown adipose tissue, such rhythms are generated as a result of an inactivating hyperoxidation reaction that is reduced by coordinated import of sulfiredoxin (Srx) into the mitochondria. However, a quantitative description of the Prx/Srx oscillating system is still missing. We investigate the basic principles that generate mitochondrial Prx/Srx rhythms using computational modeling. We observe that the previously described delay in mitochondrial Srx import, in combination with an appropriate separation of fast and slow reactions, is sufficient to generate robust self-sustained relaxation-like oscillations. We find that our conceptual model can be regarded as a series of three consecutive phases and two temporal switches, highlighting the importance of delayed negative feedback and switches in the generation of oscillations.


Asunto(s)
Relojes Circadianos/fisiología , Animales , Ritmo Circadiano/fisiología , Simulación por Computador , Humanos , Modelos Teóricos , Oxidación-Reducción , Peroxirredoxinas/metabolismo , Transducción de Señal/fisiología
8.
Int J Mol Sci ; 20(12)2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31248072

RESUMEN

Autonomous endogenous time-keeping is ubiquitous across many living organisms, known as the circadian clock when it has a period of about 24 h. Interestingly, the fundamental design principle with a network of interconnected negative and positive feedback loops is conserved through evolution, although the molecular components differ. Filamentous fungus Neurospora crassa is a well-established chrono-genetics model organism to investigate the underlying mechanisms. The core negative feedback loop of the clock of Neurospora is composed of the transcription activator White Collar Complex (WCC) (heterodimer of WC1 and WC2) and the inhibitory element called FFC complex, which is made of FRQ (Frequency protein), FRH (Frequency interacting RNA Helicase) and CK1a (Casein kinase 1a). While exploring their temporal dynamics, we investigate how limit cycle oscillations arise and how molecular switches support self-sustained rhythms. We develop a mathematical model of 10 variables with 26 parameters to understand the interactions and feedback among WC1 and FFC elements in nuclear and cytoplasmic compartments. We performed control and bifurcation analysis to show that our novel model produces robust oscillations with a wild-type period of 22.5 h. Our model reveals a switch between WC1-induced transcription and FFC-assisted inactivation of WC1. Using the new model, we also study the possible mechanisms of glucose compensation. A fairly simple model with just three nonlinearities helps to elucidate clock dynamics, revealing a mechanism of rhythms' production. The model can further be utilized to study entrainment and temperature compensation.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Modelos Biológicos , Neurospora/fisiología
9.
Bioinformatics ; 33(19): 3072-3079, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575207

RESUMEN

MOTIVATION: Neural activities of the brain occur through the formation of spatio-temporal patterns. In recent years, macroscopic neural imaging techniques have produced a large body of data on these patterned activities, yet a numerical measure of spatio-temporal coherence has often been reduced to the global order parameter, which does not uncover the degree of spatial correlation. Here, we propose to use the spatial autocorrelation measure Moran's I, which can be applied to capture dynamic signatures of spatial organization. We demonstrate the application of this technique to collective cellular circadian clock activities measured in the small network of the suprachiasmatic nucleus (SCN) in the hypothalamus. RESULTS: We found that Moran's I is a practical quantitative measure of the degree of spatial coherence in neural imaging data. Initially developed with a geographical context in mind, Moran's I accounts for the spatial organization of any interacting units. Moran's I can be modified in accordance with the characteristic length scale of a neural activity pattern. It allows a quantification of statistical significance levels for the observed patterns. We describe the technique applied to synthetic datasets and various experimental imaging time-series from cultured SCN explants. It is demonstrated that major characteristics of the collective state can be described by Moran's I and the traditional Kuramoto order parameter R in a complementary fashion. AVAILABILITY AND IMPLEMENTATION: Python 2.7 code of illustrative examples can be found in the Supplementary Material. CONTACT: christoph.schmal@charite.de or grigory.bordyugov@hu-berlin.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Encéfalo/fisiología , Procesamiento de Imagen Asistido por Computador , Análisis Espacial , Animales , Masculino , Ratones , Núcleo Supraquiasmático/fisiología
10.
J Biol Chem ; 291(46): 24172-24187, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27637333

RESUMEN

Transcription factors of the nuclear factor of activated T cell (NFAT) family are essential for antigen-specific T cell activation and differentiation. Their cooperative DNA binding with other transcription factors, such as AP1 proteins (FOS, JUN, and JUNB), FOXP3, IRFs, and EGR1, dictates the gene regulatory action of NFATs. To identify as yet unknown interaction partners of NFAT, we purified biotin-tagged NFATc1/αA, NFATc1/ßC, and NFATc2/C protein complexes and analyzed their components by stable isotope labeling by amino acids in cell culture-based mass spectrometry. We revealed more than 170 NFAT-associated proteins, half of which are involved in transcriptional regulation. Among them are many hitherto unknown interaction partners of NFATc1 and NFATc2 in T cells, such as Raptor, CHEK1, CREB1, RUNX1, SATB1, Ikaros, and Helios. The association of NFATc2 with several other transcription factors is DNA-dependent, indicating cooperative DNA binding. Moreover, our computational analysis discovered that binding motifs for RUNX and CREB1 are found preferentially in the direct vicinity of NFAT-binding motifs and in a distinct orientation to them. Furthermore, we provide evidence that mTOR and CHEK1 kinase activity influence NFAT's transcriptional potency. Finally, our dataset of NFAT-associated proteins provides a good basis to further study NFAT's diverse functions and how these are modulated due to the interplay of multiple interaction partners.


Asunto(s)
Factores de Transcripción NFATC/metabolismo , Proteínas Nucleares/metabolismo , Linfocitos T/metabolismo , Humanos , Células Jurkat , Espectrometría de Masas , Factores de Transcripción NFATC/genética , Proteínas Nucleares/genética
11.
PLoS Comput Biol ; 12(12): e1005266, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27942033

RESUMEN

Mammals evolved an endogenous timing system to coordinate their physiology and behaviour to the 24h period of the solar day. While it is well accepted that circadian rhythms are generated by intracellular transcriptional feedback loops, it is still debated which network motifs are necessary and sufficient for generating self-sustained oscillations. Here, we systematically explore a data-based circadian oscillator model with multiple negative and positive feedback loops and identify a series of three subsequent inhibitions known as "repressilator" as a core element of the mammalian circadian oscillator. The central role of the repressilator motif is consistent with time-resolved ChIP-seq experiments of circadian clock transcription factors and loss of rhythmicity in core clock gene knockouts.


Asunto(s)
Relojes Circadianos/genética , Redes Reguladoras de Genes/genética , Modelos Genéticos , Animales , Relojes Circadianos/fisiología , Biología Computacional , Retroalimentación Fisiológica , Redes Reguladoras de Genes/fisiología , Ratones
12.
PLoS Genet ; 10(5): e1004338, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24875049

RESUMEN

Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock.


Asunto(s)
Relojes Circadianos/genética , Neoplasias Colorrectales/genética , Proteínas Proto-Oncogénicas/biosíntesis , Neoplasias Cutáneas/genética , Proteínas ras/biosíntesis , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Neoplasias Cutáneas/patología , Proteínas ras/genética
13.
Eur J Immunol ; 45(11): 3150-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26300430

RESUMEN

Transcription factors (TFs) regulate cell-type-specific gene expression programs by combinatorial binding to cis-genomic elements, particularly enhancers, subsequently leading to the recruitment of cofactors, and the general transcriptional machinery to target genes. Using data integration of genome-wide TF binding profiles, we defined regions with combinatorial binding of lineage-specific master TFs (T-BET, GATA3, and ROR-γt) and STATs (STAT1 and STAT4, STAT6, and STAT3) in murine T helper (Th) 1, Th2, and Th17 cells, respectively. Stringently excluding promoter regions, we revealed precise genomic elements which were preferentially associated with the enhancer marks p300 and H3K4me1. Furthermore, closely adjacent TF co-occupied regions constituted larger enhancer domains in the respective Th-cell subset (177 in Th1, 141 in Th2, and 266 in Th17 cells) with characteristics of so-called super-enhancers. Importantly, 89% of these super-enhancer regions were Th-cell subtype-specific. Genes associated with super-enhancers, including relevant Th-cell genes (such as Ifng in Th1, Il13 in Th2, and Il17a in Th17 cells), showed strong transcriptional activity. Altogether, the discovered catalog of enhancers provides information about crucial Th-cell subtype-specific regulatory hubs, which will be useful for revealing cell-type-specific gene regulation processes.


Asunto(s)
Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Secuencia de Bases , Inmunoprecipitación de Cromatina , Ratones , Datos de Secuencia Molecular , Factores de Transcripción/inmunología
14.
Nucleic Acids Res ; 42(14): 8873-83, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25056315

RESUMEN

A periodic bias in nucleotide frequency with a period of about 11 bp is characteristic for bacterial genomes. This signal is commonly interpreted to relate to the helical pitch of negatively supercoiled DNA. Functions in supercoiling-dependent RNA transcription or as a 'structural code' for DNA packaging have been suggested. Cyanobacterial genomes showed especially strong periodic signals and, on the other hand, DNA supercoiling and supercoiling-dependent transcription are highly dynamic and underlie circadian rhythms of these phototrophic bacteria. Focusing on this phylum and dinucleotides, we find that a minimal motif of AT-tracts (AT2) yields the strongest signal. Strong genome-wide periodicity is ancestral to a clade of unicellular and polyploid species but lost upon morphological transitions into two baeocyte-forming and a symbiotic species. The signal is intermediate in heterocystous species and weak in monoploid picocyanobacteria. A pronounced 'structural code' may support efficient nucleoid condensation and segregation in polyploid cells. The major source of the AT2 signal are protein-coding regions, where it is encoded preferentially in the first and third codon positions. The signal shows only few relations to supercoiling-dependent and diurnal RNA transcription in Synechocystis sp. PCC 6803. Strong and specific signals in two distinct transposons suggest roles in transposase transcription and transpososome formation.


Asunto(s)
Cianobacterias/genética , ADN Bacteriano/química , Genoma Bacteriano , Proteínas Bacterianas/genética , Elementos Transponibles de ADN , ADN Superhelicoidal/química
15.
Biophys J ; 109(10): 2159-70, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26588574

RESUMEN

In mammals, a network of coupled neurons within the hypothalamus coordinates physiological rhythms with daily changes in the environment. In each neuron, delayed negative transcriptional feedbacks generate oscillations, albeit noisy and unreliable ones. Coupling mediated by diffusible neuropeptides lends precision and robustness to circadian rhythms. The double knockout of Cryptochrome Cry turns adult mice arrhythmic. But, remarkably, double knockout neonates continue to show robust oscillation much like wild-type neonates and appear to lose rhythmicity with development. We study quantitatively dispersed neurons and brain slices from wild-type and Cry double knockout mice to understand the links between single cell rhythmicity and intercellular coupling. We quantify oscillator properties of dispersed cells using nonlinear regression and study bifurcations diagrams of network models. We find that varying just three parameters-oscillator strength, strength of coupling, and timing of coupling-can reproduce experimentally observed features. In particular, modeling reveals that minor changes in timing of coupling can destroy synchronization as observed in adult slices from knockout mice.


Asunto(s)
Relojes Biológicos/genética , Encéfalo/fisiología , Criptocromos/genética , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Células Cultivadas , Criptocromos/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Neuronas/metabolismo , Neuronas/fisiología
16.
PLoS Comput Biol ; 10(4): e1003565, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24743470

RESUMEN

Robust synchronization is a critical feature of several systems including the mammalian circadian clock. The master circadian clock in mammals consists of about 20000 'sloppy' neuronal oscillators within the hypothalamus that keep robust time by synchronization driven by inter-neuronal coupling. The complete understanding of this synchronization in the mammalian circadian clock and the mechanisms underlying it remain an open question. Experiments and computational studies have shown that coupling individual oscillators can achieve robust synchrony, despite heterogeneity and different network topologies. But, much less is known regarding the mechanisms and circuits involved in achieving this coupling, due to both system complexity and experimental limitations. Here, we computationally study the coupling mediated by the primary coupling neuropeptide, vasoactive intestinal peptide (VIP) and its canonical receptor, VPAC2R, using the transcriptional elements and generic mode of VIP-VPAC2R signaling. We find that synchrony is only possible if VIP (an inducer of Per expression) is released in-phase with activators of Per expression. Moreover, anti-phasic VIP release suppresses coherent rhythms by moving the network into a desynchronous state. Importantly, experimentally observed rhythms in VPAC2R have little effect on network synchronization, but can improve the amplitude of the SCN network rhythms while narrowing the network entrainment range. We further show that these findings are valid across several computational network models. Thus, we identified a general design principle to achieve robust synchronization: An activating coupling agent, such as VIP, must act in-phase with the activity of core-clock promoters. More generally, the phase of coupling is as critical as the strength of coupling from the viewpoint of synchrony and entrainment.


Asunto(s)
Ritmo Circadiano , Mamíferos/fisiología , Neuropéptidos/metabolismo , Animales
17.
Heliyon ; 10(2): e24773, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312577

RESUMEN

Circadian clocks are endogenous oscillators present in almost all cells that drive daily rhythms in physiology and behavior. There are two mechanisms that have been proposed to explain how circadian rhythms are generated in mammalian cells: through a transcription-translation feedback loop (TTFL) and based on oxidation/reduction reactions, both of which are intrinsically stochastic and heterogeneous at the single cell level. In order to explore the emerging properties of stochastic and heterogeneous redox oscillators, we simplify a recently developed kinetic model of redox oscillations to an amplitude-phase oscillator with 'twist' (period-amplitude correlation) and subject to Gaussian noise. We show that noise and heterogeneity alone lead to fast desynchronization, and that coupling between noisy oscillators can establish robust and synchronized rhythms with amplitude expansions and tuning of the period due to twist. Coupling a network of redox oscillators to a simple model of the TTFL also contributes to synchronization, large amplitudes and fine-tuning of the period for appropriate interaction strengths. These results provide insights into how the circadian clock compensates randomness from intracellular sources and highlight the importance of noise, heterogeneity and coupling in the context of circadian oscillators.

18.
J Biol Chem ; 287(22): 18386-97, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22474330

RESUMEN

The cytokine IL-2 performs opposite functions supporting efficient immune responses and playing a key role in peripheral tolerance. Therefore, precise fine-tuning of IL-2 expression is crucial for adjusting the immune response. Combining transcription factor analysis at the single cell and the single nucleus level using flow cytometry with statistical analysis, we showed that physiological differences in the expression levels of c-Fos and NFATc2, but not of c-Jun and NF-κBp65, are limiting for the decision whether IL-2 is expressed in a strongly activated human memory T-helper (Th) cell. Variation in the expression of c-Fos leads to substantial diversity of IL-2 expression in ∼40% of the memory Th cells. The remaining cells exhibit an equally high c-Fos expression level, thereby ensuring robustness in IL-2 response within the population. These findings reveal how memory Th cells benefit from regulated variation in transcription factor expression to achieve a certain stability and variability of cytokine expression in a controlled manner.


Asunto(s)
Memoria Inmunológica , Interleucina-2/inmunología , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Linfocitos T Colaboradores-Inductores/inmunología , Citometría de Flujo , Expresión Génica , Humanos , Interleucina-2/genética , Factores de Transcripción NFATC/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo
19.
Mol Syst Biol ; 8: 601, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22864383

RESUMEN

RAS mutations are highly relevant for progression and therapy response of human tumours, but the genetic network that ultimately executes the oncogenic effects is poorly understood. Here, we used a reverse-engineering approach in an ovarian cancer model to reconstruct KRAS oncogene-dependent cytoplasmic and transcriptional networks from perturbation experiments based on gene silencing and pathway inhibitor treatments. We measured mRNA and protein levels in manipulated cells by microarray, RT-PCR and western blot analysis, respectively. The reconstructed model revealed complex interactions among the transcriptional and cytoplasmic components, some of which were confirmed by double pertubation experiments. Interestingly, the transcription factors decomposed into two hierarchically arranged groups. To validate the model predictions, we analysed growth parameters and transcriptional deregulation in the KRAS-transformed epithelial cells. As predicted by the model, we found two functional groups among the selected transcription factors. The experiments thus confirmed the predicted hierarchical transcription factor regulation and showed that the hierarchy manifests itself in downstream gene expression patterns and phenotype.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Neoplasias Ováricas/genética , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Proteínas ras/metabolismo , Análisis de Varianza , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Genes ras , Proteína HMGA2/antagonistas & inhibidores , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Humanos , Factor 6 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Análisis por Micromatrices , Modelos Biológicos , Neoplasias Ováricas/metabolismo , Ovario/efectos de los fármacos , Ovario/patología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-fos/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Proteínas ras/genética
20.
Nucleic Acids Res ; 39(17): e113, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21700670

RESUMEN

Nuclear organization of chromatin is an important level of genome regulation with positional changes of genes occurring during reprogramming. Inherent variability of biological specimens, wide variety of sample preparation and imaging conditions, though pose significant challenges to data analysis and comparison. Here, we describe the development of a computational image analysis toolbox overcoming biological variability hurdles by a novel single cell randomizing normalization. We performed a comparative analysis of the relationship between spatial positioning of pluripotency genes with their genomic activity and determined the degree of similarity between fibroblasts, induced pluripotent stem cells and embryonic stem cells. Our analysis revealed a preferred positioning of actively transcribed Sox2, Oct4 and Nanog away from the nuclear periphery, but not from pericentric heterochromatin. Moreover, in the silent state, we found no common nuclear localization for any of the genes. Our results suggest that the surrounding gene density hinders relocation from an internal nuclear position. Altogether, our data do not support the hypothesis that the nuclear periphery acts as a general transcriptional silencer, rather suggesting that internal nuclear localization is compatible with expression in pluripotent cells but not sufficient for expression in mouse embryonic fibroblasts. Thus, our computational approach enables comparative analysis of topological relationships in spite of stark morphological variability typical of biological data sets.


Asunto(s)
Reprogramación Celular , Expresión Génica , Imagenología Tridimensional/métodos , Hibridación Fluorescente in Situ , Animales , Núcleo Celular/genética , Células Cultivadas , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA