RESUMEN
[Figure: see text].
Asunto(s)
Insuficiencia Cardíaca/diagnóstico por imagen , Macrófagos/metabolismo , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Animales , Complejos de Coordinación/farmacocinética , Fibrosis , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Péptidos Cíclicos/farmacocinética , Radiofármacos/farmacocinética , Receptores CXCR4/metabolismoRESUMEN
Persistent inflammation following myocardial infarction (MI) precipitates adverse outcome including acute ventricular rupture and chronic heart failure. Molecular imaging allows longitudinal assessment of immune cell activity in the infarct territory and predicts severity of remodeling. We utilized a multiparametric imaging platform to assess the immune response and cardiac healing following MI in mice. Suppression of circulating macrophages prior to MI paradoxically resulted in higher total leukocyte content in the heart, demonstrated by increased CXC motif chemokine receptor 4 (CXCR4) positron emission tomography imaging. This supported the formation of a thrombus overlying the injured region, as identified by magnetic resonance imaging. The injured and thrombotic region in macrophage depeleted mice subsequently showed active calcification, as evidenced by accumulation of 18F-fluoride and by cardiac computed tomography. Importantly, macrophage suppression triggered a prolonged inflammatory response confirmed by post-mortem tissue analysis that was associated with higher mortality from ventricular rupture early after occlusion and with increased infarct size and worse chronic contractile function at 6 weeks after reperfusion. These findings establish a molecular imaging toolbox for monitoring the interplay between adverse immune response and tissue repair after MI. This may serve as a foundation for development and monitoring of novel targeted therapies that may include immune modulation and endogenous healing support.
Asunto(s)
Infarto del Miocardio , Remodelación Ventricular , Animales , Inmunidad , Ratones , Infarto del Miocardio/patología , Miocardio/patología , Tomografía de Emisión de Positrones/métodos , Remodelación Ventricular/fisiologíaRESUMEN
AIMS: Balance between inflammatory and reparative leucocytes allows optimal healing after myocardial infarction (MI). Interindividual heterogeneity evokes variable functional outcome complicating targeted therapy. We aimed to characterize infarct chemokine CXC-motif receptor 4 (CXCR4) expression using positron emission tomography (PET) and establish its relationship to cardiac outcome. We tested whether image-guided early CXCR4 directed therapy attenuates chronic dysfunction. METHODS AND RESULTS: Mice (n = 180) underwent coronary ligation or sham surgery and serial PET imaging over 7 days. Infarct CXCR4 content was elevated over 3 days after MI compared with sham (%ID/g, Day 1:1.1 ± 0.2; Day 3:0.9 ± 0.2 vs. 0.6 ± 0.1, P < 0.001), confirmed by flow cytometry and histopathology. Mice that died of left ventricle (LV) rupture exhibited persistent inflammation at 3 days compared with survivors (1.2 ± 0.3 vs. 0.9 ± 0.2% ID/g, P < 0.001). Cardiac magnetic resonance measured cardiac function. Higher CXCR4 signal at 1 and 3 days independently predicted worse functional outcome at 6 weeks (rpartial = -0.4, P = 0.04). Mice were treated with CXCR4 blocker AMD3100 following the imaging timecourse. On-peak CXCR4 blockade at 3 days lowered LV rupture incidence vs. untreated MI (8% vs. 25%), and improved contractile function at 6 weeks (+24%, P = 0.01). Off-peak CXCR4 blockade at 7 days did not improve outcome. Flow cytometry analysis revealed lower LV neutrophil and Ly6Chigh monocyte content after on-peak treatment. Patients (n = 50) early after MI underwent CXCR4 PET imaging and functional assessment. Infarct CXCR4 expression in acute MI patients correlated with contractile function at time of PET and on follow-up. CONCLUSION: Positron emission tomography imaging identifies early CXCR4 up-regulation which predicts acute rupture and chronic contractile dysfunction. Imaging-guided CXCR4 inhibition accelerates inflammatory resolution and improves outcome. This supports a molecular imaging-based theranostic approach to guide therapy after MI.
Asunto(s)
Infarto del Miocardio , Tomografía Computarizada por Rayos X , Animales , Humanos , Ratones , Imagen Molecular , Miocardio , Tomografía de Emisión de Positrones , Receptores CXCR4 , Remodelación VentricularRESUMEN
PURPOSE: Myocardial infarction (MI) triggers a local inflammatory response which orchestrates cardiac repair and contributes to concurrent neuroinflammation. Angiotensin-converting enzyme (ACE) inhibitor therapy not only attenuates cardiac remodeling by interfering with the neurohumoral system, but also influences acute leukocyte mobilization from hematopoietic reservoirs. Here, we seek to dissect the anti-inflammatory and anti-remodeling contributions of ACE inhibitors to the benefit of heart and brain outcomes after MI. METHODS: C57BL/6 mice underwent permanent coronary artery ligation (n = 41) or sham surgery (n = 9). Subgroups received ACE inhibitor enalapril (20 mg/kg, oral) either early (anti-inflammatory strategy; 10 days treatment beginning 3 days prior to surgery; n = 9) or delayed (anti-remodeling; continuous from 7 days post-MI; n = 16), or no therapy (n = 16). Cardiac and neuroinflammation were serially investigated using whole-body macrophage- and microglia-targeted translocator protein (TSPO) PET at 3 days, 7 days, and 8 weeks. In vivo PET signal was validated by autoradiography and histopathology. RESULTS: Myocardial infarction evoked higher TSPO signal in the infarct region at 3 days and 7 days compared with sham (p < 0.001), with concurrent elevation in brain TSPO signal (+ 18%, p = 0.005). At 8 weeks after MI, remote myocardium TSPO signal was increased, consistent with mitochondrial stress, and corresponding to recurrent neuroinflammation. Early enalapril treatment lowered the acute TSPO signal in the heart and brain by 55% (p < 0.001) and 14% (p = 0.045), respectively. The acute infarct signal predicted late functional outcome (r = 0.418, p = 0.038). Delayed enalapril treatment reduced chronic myocardial TSPO signal, consistent with alleviated mitochondrial stress. Early enalapril therapy tended to lower TSPO signal in the failing myocardium at 8 weeks after MI (p = 0.090) without an effect on chronic neuroinflammation. CONCLUSIONS: Whole-body TSPO PET identifies myocardial macrophage infiltration and neuroinflammation after MI, and altered cardiomyocyte mitochondrial density in chronic heart failure. Improved chronic cardiac outcome by enalapril treatment derives partially from acute anti-inflammatory activity with complementary benefits in later stages. Whereas early ACE inhibitor therapy lowers acute neuroinflammation, chronic alleviation is not achieved by early or delayed ACE inhibitor therapy, suggesting a more complex mechanism underlying recurrent neuroinflammation in ischemic heart failure.
Asunto(s)
Enalapril , Corazón , Inflamación , Infarto del Miocardio , Enfermedades del Sistema Nervioso , Enfermedad Aguda , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Enfermedad Crónica , Enalapril/farmacología , Enalapril/uso terapéutico , Corazón/diagnóstico por imagen , Corazón/efectos de los fármacos , Inflamación/diagnóstico por imagen , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/complicaciones , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/tratamiento farmacológico , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Enfermedades del Sistema Nervioso/tratamiento farmacológicoRESUMEN
BACKGROUND: Quantitative cardiac contractile function assessment is the primary indicator of disease progression and therapeutic efficacy in small animals. Operator dependency is a major challenge with commonly used echocardiography. Simultaneous assessment of cardiac perfusion and function in nuclear scans would reduce burden on the animal and facilitate longitudinal studies. We evaluated the accuracy of contractile function measurements obtained from electrocardiogram-gated nuclear perfusion imaging compared with anatomic imaging. METHODS AND RESULTS: In healthy C57Bl/6N mice (n = 11), 99mTc-sestamibi SPECT and 13N-ammonia PET underestimated left ventricular volumes (23 to 28%, P = 0.02) compared to matched anatomic images, though ejection fraction (LVEF) was comparable (%, SPECT: 73 ± 8 vs CMR: 72 ± 6, P = 0.1). At 1 week after myocardial infarction (n = 13), LV volumes were significantly lower in perfusion images compared to CMR and contrast CT (P = 0.003), and LVEF was modestly overestimated (%, SPECT: 37 ± 8, vs CMR: 27 ± 7, P = 0.003). Nuclear images exhibited good intra- and inter-reader agreement. Perfusion SPECT accurately calculated infarct size compared to histology (r = 0.95, P < 0.001). CONCLUSIONS: Cardiac function can be calculated by gated nuclear perfusion imaging in healthy mice. After infarction, perfusion imaging overestimates LVEF, which should be considered for comparison to other modalities. Combined functional and infarct size analysis may optimize imaging protocols and reduce anaesthesia duration for longitudinal studies.
Asunto(s)
Tomografía Computarizada por Emisión de Fotón Único Sincronizada Cardíaca/métodos , Contracción Miocárdica/fisiología , Infarto del Miocardio/diagnóstico por imagen , Imagen de Perfusión Miocárdica/métodos , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/fisiopatología , Tecnecio Tc 99m Sestamibi , Función Ventricular IzquierdaRESUMEN
The immune-fibrosis axis plays a critical role in cardiac remodeling after acute myocardial infarction. Imaging approaches to monitor temporal inflammation and fibroblast activation in mice have seen wide application in recent years. However, the repeatability of quantitative measurements remains challenging, particularly across multiple imaging centers. We aimed to determine reproducibility of quantitative inflammation and fibroblast activation images acquired at 2 facilities after myocardial infarction in mice. Methods: Mice underwent coronary artery ligation and sequential imaging with 68Ga-DOTA-ECL1i to assess chemokine receptor type 2 expression at 3 d after myocardial infarction and 68Ga-FAPI-46 to assess fibroblast activation protein expression at 7 d after myocardial infarction. Images were acquired at 1 center using either a local or a consensus protocol developed with the second center; the protocols differed in the duration of isoflurane anesthesia and the injected tracer dose. A second group of animals were scanned at the second site using the consensus protocol. Image analyses performed by each site and just by 1 site were also compared. Results: The uptake of 68Ga-DOTA-ECL1i in the infarct territory tended to be higher when the consensus protocol was used (P = 0.03). No difference was observed between protocol acquisitions for 68Ga-FAPI-46. Compared with the local protocol, the consensus protocol decreased variability between individual animals. When a matched consensus protocol was used, the 68Ga-DOTA-ECL1i infarct territory percentage injected dose per gram of tissue was higher on images acquired at site B than on those acquired at site A (P = 0.006). When normalized to body weight as SUV, this difference was mitigated. Both the percentage injected dose per gram of tissue and the SUV were comparable between sites for 68Ga-FAPI-46. Image analyses at the sites differed significantly, but this difference was mitigated when all images were analyzed at site A. Conclusion: The application of a standardized acquisition protocol may lower variability within datasets and facilitate comparison of molecular radiotracer distribution between preclinical imaging centers. Like clinical studies, multicenter preclinical studies should use centralized core-based image analysis to maximize reproducibility across sites.
Asunto(s)
Radioisótopos de Galio , Infarto del Miocardio , Ratones , Animales , Reproducibilidad de los Resultados , Infarto del Miocardio/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Inflamación , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodosRESUMEN
Myocardial fibrosis is a major contributor to the development and progression of heart failure. Significant progress in the understanding of its pathobiology has led to the introduction and preclinical testing of multiple highly specific antifibrotic therapies. Because the mechanisms of fibrosis are highly dynamic, and because the involved cell populations are heterogeneous and plastic, there is increasing emphasis that any therapy directed specifically against myocardial fibrosis will require personalization and guidance by equally specific diagnostic testing for successful clinical translation. Noninvasive imaging techniques have undergone significant progress and provide increasingly specific information about the quantity, quality, and activity of myocardial fibrosis. Cardiac MRI can precisely map the extracellular space of the myocardium, whereas nuclear imaging characterizes activated fibroblasts and immune cells as the cellular components contributing to fibrosis. Existing techniques may be used in complementarity to provide the imaging biomarkers needed for the success of novel targeted therapies. This review provides a road map on how progress in basic fibrosis research, antifibrotic drug development, and high-end noninvasive imaging may come together to facilitate the success of fibrosis-directed cardiovascular medicine.
Asunto(s)
Cardiomiopatías , Corazón , Humanos , Miocardio/patología , Fibrosis , Fibroblastos/patología , Imagen MolecularRESUMEN
Rationale: Acute myocardial infarction (MI) triggers a systemic inflammatory response including crosstalk along the heart-kidney axis. We employed radionuclide-based inflammation-targeted whole-body molecular imaging to identify potential cardio-renal crosstalk after MI in a translational setup. Methods: Serial whole-body positron emission tomography (PET) with the specific CXCR4 ligand 68Ga-Pentixafor was performed after MI in mice. Tracer retention in kidneys and heart was compared to hematopoietic organs to evaluate systemic inflammation, validated by ex vivo analysis and correlated with progressive contractile dysfunction. Additionally, 96 patients underwent 68Ga-Pentixafor PET within the first week after MI, for systems-based image analysis and to determine prognostic value for adverse renal outcome. Results: In mice, transient myocardial CXCR4 upregulation occurred early after MI. Cardiac and renal PET signal directly correlated over the time course (r = 0.62, p < 0.0001), suggesting an inflammatory link between organs. Ex-vivo autoradiography (r = 0.9, p < 0.01) and CD68 immunostaining indicated signal localization to inflammatory cell content. Renal signal at 7d was inversely proportional to left ventricular ejection fraction at 6 weeks after MI (r = -0.79, p < 0.01). In patients, renal CXCR4 signal also correlated with signal from infarct (r = 0.25, p < 0.05) and remote myocardium (r = 0.39, p < 0.0001). Glomerular filtration rate (GFR) was available in 48/96 (50%) during follow-up. Worsening of renal function (GFR loss >5 mL/min/1.73m2), occurred a mean 80.5 days after MI in 16/48 (33.3%). Kaplan-Meier analysis revealed adverse renal outcome for patients with elevated remote myocardial CXCR4 signal (p < 0.05). Multivariate Cox analysis confirmed an independent predictive value (relative to baseline GFR, LVEF, infarct size; HR, 5.27). Conclusion: Systems-based CXCR4-targeted molecular imaging identifies inflammatory crosstalk along the cardio-renal axis early after MI.
Asunto(s)
Corazón/fisiopatología , Riñón/fisiopatología , Infarto del Miocardio/fisiopatología , Animales , Complejos de Coordinación/farmacología , Humanos , Inflamación/metabolismo , Inflamación/fisiopatología , Masculino , Ratones , Imagen Molecular/métodos , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Péptidos Cíclicos/farmacología , Tomografía de Emisión de Positrones/métodos , Receptores CXCR4/metabolismo , Volumen Sistólico , Función Ventricular Izquierda , Remodelación Ventricular/fisiología , Imagen de Cuerpo Entero/métodosRESUMEN
Background: Myocardial infarction (MI) evokes an organized remodeling process characterized by the activation and transdifferentiation of quiescent cardiac fibroblasts to generate a stable collagen rich scar. Early fibroblast activation may be amenable to targeted therapy, but is challenging to identify in vivo. We aimed to non-invasively image active fibrosis by targeting the fibroblast activation protein (FAP) expressed by activated (myo)fibroblasts, using a novel positron emission tomography (PET) radioligand [68Ga]MHLL1 after acute MI. Methods: One-step chemical synthesis and manual as well as module-based radiolabeling yielded [68Ga]MHLL1. Binding characteristics were evaluated in murine and human FAP-transfected cells, and stability tested in human serum. Biodistribution in healthy animals was interrogated by dynamic PET imaging, and metabolites were measured in blood and urine. The temporal pattern of FAP expression was determined by serial PET imaging at 7 d and 21 d after coronary artery ligation in mice as percent injected dose per gram (%ID/g). PET measurements were validated by ex vivo autoradiography and immunostaining for FAP and inflammatory macrophages. Results: [68Ga]MHLL1 displayed specific uptake in murine and human FAP-positive cells (p = 0.0208). In healthy mice the tracer exhibited favorable imaging characteristics, with low blood pool retention and dominantly renal clearance. At 7 d after coronary artery ligation, [68Ga]MHLL1 uptake was elevated in the infarct relative to the non-infarcted remote myocardium (1.3 ± 0.3 vs. 1.0 ± 0.2 %ID/g, p < 0.001) which persisted to 21 d after MI (1.3 ± 0.4 vs. 1.1 ± 0.4 %ID/g, p = 0.013). Excess unlabeled compound blocked tracer accumulation in both infarct and non-infarct remote myocardium regions (p < 0.001). Autoradiography and histology confirmed the regional uptake of [68Ga]MHLL1 in the infarct and especially border zone regions, as identified by Masson trichrome collagen staining. Immunostaining further delineated persistent FAP expression at 7 d and 21 d post-MI in the border zone, consistent with tracer distribution in vivo. Conclusion: The simplified synthesis of [68Ga]MHLL1 bears promise for non-invasive characterization of fibroblast activation protein early in remodeling after MI.
Asunto(s)
Endopeptidasas/metabolismo , Radioisótopos de Galio/farmacología , Proteínas de la Membrana/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Autorradiografía/métodos , Línea Celular Tumoral , Endopeptidasas/fisiología , Fibroblastos/metabolismo , Fibrosis/diagnóstico por imagen , Radioisótopos de Galio/metabolismo , Humanos , Masculino , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Imagen Molecular/métodos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocardio/patología , Distribución Tisular/fisiología , Tomografía Computarizada por Rayos X/métodosRESUMEN
As therapeutic approaches have evolved from exogenous bone marrow cell delivery to pharmacological stimulation of endogenous repair, so too has imaging of cardiac repair made significant strides forward. Evaluation of functional outcome remains a staple of noninvasive clinical imaging, which can robustly quantify contractile function, perfusion, and tissue viability. Direct labeling of cells or other novel therapeutics visualizes the whole-body distribution and pharmacokinetics of the therapeutic agent, providing insights into retention, targeting, and drug-tissue interactions. And finally, targeted molecular imaging agents are emerging that may be specifically coupled to drugs targeting the same pathway. This approach enables interrogation of temporal and spatial changes at the molecular level underlying tissue degeneration and regeneration, which facilitates accurate patient selection and timing for therapeutic intervention, as exemplified by recent efforts focusing on the role of inflammation in cardiac repair. The concept of image-guided repair carves out an important and evolving niche for molecular imaging in cardiovascular medicine, with the potential not only to predict outcomes but also to improve patient stratification and progress toward personalized reparative therapy.
Asunto(s)
Corazón , Radioisótopos , Humanos , Imagen Molecular , Valor Predictivo de las PruebasRESUMEN
Acute myocardial infarction (MI) triggers a local and systemic inflammatory response. We recently showed microglia involvement using translocator protein imaging. Here, we evaluated whether 11C-methionine provides further insight into heart-brain inflammation networking. Methods: Male C57BL/6 mice underwent permanent coronary artery ligation followed by 11C-methionine PET at 3 and 7 d (n = 3). In subgroups, leukocyte homing was blocked by integrin antibodies (n = 5). The cellular substrate for PET signal was identified using brain section immunostaining. Results:11C-methionine uptake (percentage injected dose/cm3) peaked in the MI region on day 3 (5.9 ± 0.9 vs. 2.4 ± 0.5), decreasing to the control level by day 7 (4.3 ± 0.6). Brain uptake was proportional to cardiac uptake (r = 0.47, P < 0.05), peaking also on day 3 (2.9 ± 0.4 vs. 2.4 ± 0.3) and returning to baseline on day 7 (2.3 ± 0.4). Integrin blockade reduced uptake at every time point. Immunostaining on day 3 revealed colocalization of the l-type amino acid transporter, with glial fibrillary acidic protein-positive astrocytes but not CD68-positive microglia. Conclusion: PET imaging with 11C-methionine specifically identifies an astrocyte component, enabling further dissection of the heart-brain axis in post-MI inflammation.