Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Neurosci ; 129(9): 871-881, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30775947

RESUMEN

Aims: The JAK-STAT signalling pathway is one of the key regulators of pro-gliogenesis process during brain development. Down syndrome (DS) individuals, as well as DS mouse models, exhibit an increased number of astrocytes, suggesting an imbalance of neurogenic-to-gliogenic shift attributed to dysregulated JAK-STAT signalling pathway. The gene and protein expression profiles of JAK-STAT pathway members have not been characterised in the DS models. Therefore, we aimed to profile the expression of Jak1, Jak2, Stat1, Stat3 and Stat6 at different stages of brain development in the Ts1Cje mouse model of DS. Methods: Whole brain samples from Ts1Cje and wild-type mice at embryonic day (E)10.5, E15, postnatal day (P)1.5; and embryonic cortex-derived neurospheres were collected for gene and protein expression analysis. Gene expression profiles of three brain regions (cerebral cortex, cerebellum and hippocampus) from Ts1Cje and wild-type mice across four time-points (P1.5, P15, P30 and P84) were also analysed. Results: In the developing mouse brain, none of the Jak/Stat genes were differentially expressed in the Ts1Cje model compared to wild-type mice. However, Western blot analyses indicated that phosphorylated (p)-Jak2, p-Stat3 and p-Stat6 were downregulated in the Ts1Cje model. During the postnatal brain development, Jak/Stat genes showed complex expression patterns, as most of the members were downregulated at different selected time-points. Notably, embryonic cortex-derived neurospheres from Ts1Cje mouse brain expressed lower Stat3 and Stat6 protein compared to the wild-type group. Conclusion: The comprehensive expression profiling of Jak/Stat candidates provides insights on the potential role of the JAK-STAT signalling pathway during abnormal development of the Ts1Cje mouse brains.


Asunto(s)
Encéfalo/fisiología , Modelos Animales de Enfermedad , Síndrome de Down/genética , Quinasas Janus/genética , Factores de Transcripción STAT/genética , Transcriptoma/fisiología , Animales , Encéfalo/embriología , Células Cultivadas , Síndrome de Down/metabolismo , Quinasas Janus/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Transcripción STAT/metabolismo , Transducción de Señal/fisiología
2.
BMC Genomics ; 15: 624, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25052193

RESUMEN

BACKGROUND: The Ts1Cje mouse model of Down syndrome (DS) has partial triplication of mouse chromosome 16 (MMU16), which is partially homologous to human chromosome 21. These mice develop various neuropathological features identified in DS individuals. We analysed the effect of partial triplication of the MMU16 segment on global gene expression in the cerebral cortex, cerebellum and hippocampus of Ts1Cje mice at 4 time-points: postnatal day (P)1, P15, P30 and P84. RESULTS: Gene expression profiling identified a total of 317 differentially expressed genes (DEGs), selected from various spatiotemporal comparisons, between Ts1Cje and disomic mice. A total of 201 DEGs were identified from the cerebellum, 129 from the hippocampus and 40 from the cerebral cortex. Of these, only 18 DEGs were identified as common to all three brain regions and 15 were located in the triplicated segment. We validated 8 selected DEGs from the cerebral cortex (Brwd1, Donson, Erdr1, Ifnar1, Itgb8, Itsn1, Mrps6 and Tmem50b), 18 DEGs from the cerebellum (Atp5o, Brwd1, Donson, Dopey2, Erdr1, Hmgn1, Ifnar1, Ifnar2, Ifngr2, Itgb8, Itsn1, Mrps6, Paxbp1, Son, Stat1, Tbata, Tmem50b and Wrb) and 11 DEGs from the hippocampus (Atp5o, Brwd1, Cbr1, Donson, Erdr1, Itgb8, Itsn1, Morc3, Son, Tmem50b and Wrb). Functional clustering analysis of the 317 DEGs identified interferon-related signal transduction as the most significantly dysregulated pathway in Ts1Cje postnatal brain development. RT-qPCR and western blotting analysis showed both Ifnar1 and Stat1 were over-expressed in P84 Ts1Cje cerebral cortex and cerebellum as compared to wild type littermates. CONCLUSIONS: These findings suggest over-expression of interferon receptor may lead to over-stimulation of Jak-Stat signaling pathway which may contribute to the neuropathology in Ts1Cje or DS brain. The role of interferon mediated activation or inhibition of signal transduction including Jak-Stat signaling pathway has been well characterized in various biological processes and disease models including DS but information pertaining to the role of this pathway in the development and function of the Ts1Cje or DS brain remains scarce and warrants further investigation.


Asunto(s)
Encéfalo/metabolismo , Síndrome de Down/genética , Interferones/metabolismo , Animales , Corteza Cerebral/metabolismo , Análisis por Conglomerados , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Hipocampo/metabolismo , Interferones/genética , Quinasas Janus/genética , Quinasas Janus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/genética , Trisomía
3.
J Biol Chem ; 287(24): 20652-63, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22535952

RESUMEN

Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid ß-oxidation.


Asunto(s)
Elementos Transponibles de ADN , Complejo I de Transporte de Electrón/metabolismo , Enfermedad de Leigh/enzimología , Mitocondrias/enzimología , Mutación , NAD/metabolismo , Animales , Sitios de Unión , Complejo I de Transporte de Electrón/genética , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Enfermedad de Leigh/fisiopatología , Metabolómica/métodos , Ratones , Ratones Mutantes , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/patología , NAD/genética , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Proteómica/métodos , Empalme del ARN/genética
4.
BMC Cancer ; 13: 206, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23617802

RESUMEN

BACKGROUND: The JAK2 V617F mutation is the most frequent somatic change in myeloproliferative neoplasms, making it an important tumour-specific marker for diagnostic purposes and for the detection of minimal residual disease. Sensitive quantitative assays are required for both applications, particularly for the monitoring of minimal residual disease, which requires not only high sensitivity but also very high specificity. METHODS: We developed a highly sensitive probe-free quantitative mutant-allele detection method, Quantitative Threefold Allele-Specific PCR (QuanTAS-PCR), that is performed in a closed-tube system, thus eliminating the manipulation of PCR products. QuantTAS-PCR uses a threefold approach to ensure allele-specific amplification of the mutant sequence: (i) a mutant allele-specific primer, (ii) a 3'dideoxy blocker to suppress false-positive amplification from the wild-type template and (iii) a PCR specificity enhancer, also to suppress false-positive amplification from the wild-type template. Mutant alleles were quantified relative to exon 9 of JAK2. RESULTS: We showed that the addition of the 3'dideoxy blocker suppressed but did not eliminate false-positive amplification from the wild-type template. However, the addition of the PCR specificity enhancer near eliminated false-positive amplification from the wild-type allele. Further discrimination between true and false positives was enabled by using the quantification cycle (Cq) value of a single mutant template as a cut-off point, thus enabling robust distinction between true and false positives. As 10,000 JAK2 templates were used per replicate, the assay had a sensitivity of 1/10(-4) per replicate. Greater sensitivity could be reached by increasing the number of replicates analysed. Variation in replicates when low mutant-allele templates were present necessitated the use of a statistics-based approach to estimate the load of mutant JAK2 copies. QuanTAS-PCR showed comparable quantitative results when validated against a commercial assay. CONCLUSIONS: QuanTAS-PCR is a simple, cost-efficient, closed-tube method for JAK2 V617F mutation quantification that can detect very low levels of the mutant allele, thus enabling analysis of minimal residual disease. The approach can be extended to the detection of other recurrent single nucleotide somatic changes in cancer.


Asunto(s)
Análisis Mutacional de ADN/métodos , Janus Quinasa 2/genética , Leucemia Eritroblástica Aguda/genética , Mutación Puntual , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Alelos , Cartilla de ADN , Exones , Reacciones Falso Positivas , Células HL-60 , Humanos , Neoplasia Residual
5.
Haematologica ; 97(5): 780-3, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22133769

RESUMEN

Hairy cell leukemia has been shown to be strongly associated with the BRAF V600E mutation. We screened 59 unenriched archived bone marrow aspirate and peripheral blood samples from 51 patients with hairy cell leukemia using high resolution melting analysis and confirmatory Sanger sequencing. The BRAF V600E mutation was detected in 38 samples (from 36 patients). The BRAF V600E mutation was detected in all samples with disease involvement above the limit of sensitivity of the techniques used. Thirty-three of 34 samples from other hematologic malignancies were negative for BRAF mutations. A BRAF K601E mutation was detected in a patient with splenic marginal zone lymphoma. Our data support the recent finding of a disease defining point mutation in hairy cell leukemia. Furthermore, high resolution melting with confirmatory Sanger sequencing are useful methods that can be employed in routine diagnostic laboratories to detect BRAF mutations in patients with hairy cell leukemia and related lymphoproliferative disorders.


Asunto(s)
Leucemia de Células Pilosas/genética , Trastornos Linfoproliferativos/genética , Mutación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Anciano , Médula Ósea/metabolismo , Médula Ósea/patología , Humanos , Leucemia de Células Pilosas/diagnóstico , Trastornos Linfoproliferativos/diagnóstico , Masculino , Estadificación de Neoplasias , Reacción en Cadena de la Polimerasa , Pronóstico
6.
Cereb Cortex ; 21(3): 683-97, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20693275

RESUMEN

Nrgn and Camk2n1 are highly expressed in the brain and play an important role in synaptic long-term potentiation via regulation of Ca(2+)/calmodulin-dependent protein kinase II. We have shown that the gene loci for these 2 proteins are actively transcribed in the adult cerebral cortex and feature multiple overlapping transcripts in both the sense and antisense orientations with alternative polyadenylation. These transcripts were upregulated in the adult compared with embryonic and P1.5 mouse cerebral cortices, and transcripts with different 3' untranslated region lengths showed differing expression profiles. In situ hybridization (ISH) analysis revealed spatiotemporal regulation of the Nrgn and Camk2n1 sense and natural antisense transcripts (NATs) throughout cerebral corticogenesis. In addition, we also demonstrated that the expression of these transcripts was organ-specific. Both Nrgn and Camk2n1 sense and NATs were also upregulated in differentiating P19 teratocarcinoma cells. RNA fluorescent ISH analysis confirmed the capability of these NATs to form double-stranded RNA aggregates with the sense transcripts in the cytoplasm of cells obtained from the brain. We propose that the differential regulation of multiple sense and novel overlapping NATs at the Nrgn and Camk2n1 loci will increase the diversity of posttranscriptional regulation, resulting in cell- and time-specific regulation of their gene products during cerebral corticogenesis and function.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Corteza Cerebral/crecimiento & desarrollo , Neurogénesis/genética , Neurogranina/genética , ARN sin Sentido/genética , Transcripción Genética , Animales , Southern Blotting , Diferenciación Celular/genética , Línea Celular Tumoral , Corteza Cerebral/fisiología , Análisis por Conglomerados , Perfilación de la Expresión Génica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Pathology ; 54(3): 279-285, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34635319

RESUMEN

Therapeutically actionable ROS1 rearrangements have been described in 1-3% of non-small cell lung cancer (NSCLC). Screening for ROS1 rearrangements is recommended to be by immunohistochemistry (IHC), followed by confirmation with fluorescence in situ hybridisation (FISH) or sequencing. However, in practise ROS1 IHC presents difficulties due to conflicting scoring systems, multiple clones and expression in tumours that are wild-type for ROS1. We assessed ROS1 IHC in 285 consecutive cases of NSCLC with non-squamous histology over a nearly 2-year period. IHC was scored with ROS1 clone D4D6 (n=270), clone SP384 (n=275) or both clones (n=260). Results were correlated with ROS1 break-apart FISH (n=67), ALK status (n=194), and sequence data of EGFR (n=178) and other drivers, where possible. ROS1 expression was detected in 161/285 cases (56.5%), including 13/14 ROS1 FISH-positive cases. There was no ROS1 expression in one ROS1 FISH-positive case in which sequencing detected an ALK-EML4 fusion, but not a ROS1 fusion. The other 13 ROS1 FISH-positive cases showed moderate to strong staining with both IHC clones. However, one case with a TPM3-ROS1 fusion would have been scored as negative with SP384 and D4D6 clones by some previous criteria. ROS1 expression was also detected in 58/285 cases (20.4%) that had driver mutations in genes other than ROS1. A sensitivity of 100% for detecting a ROS1 rearrangement by FISH was achieved by omitting intensity from the IHC scoring criteria and expression in >0% cells with D4D6 or in ≥50% cells with SP384. Excluding cases with driver events in any MAPK pathway gene (e.g., in ALK, EGFR, KRAS, BRAF, ERBB2 and MET) substantially reduced the number of cases proceeding to ROS1 FISH. Only 15.9% of MAPK-negative NSCLC would proceed to FISH for an IHC threshold of >0% cells with D4D6, with a specificity of 42.4%. For a threshold of ≥50% cells with SP384, only 18.5% of MAPK-negative cases would proceed to FISH, with a specificity of 31.4%. Based on our data we suggest an algorithm for screening for ROS1 rearrangements in NSCLC in which ROS1 FISH is only performed in cases that have been demonstrated to lack activating mutations in any MAPK pathway gene by comprehensive sequencing and ALK IHC, and show staining at any intensity in ≥50% of cells with clone SP384, or >0% cells with D4D6.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Detección Precoz del Cáncer , Reordenamiento Génico , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
8.
Blood ; 113(9): 1929-37, 2009 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-19109561

RESUMEN

Down syndrome (DS) persons are born with various hematopoietic abnormalities, ranging from relatively benign, such as neutrophilia and macrocytosis, to a more severe transient myeloproliferative disorder (TMD). In most cases, these abnormalities resolve in the first few months to years of life. However, sometimes the TMD represents a premalignant disease that develops into acute megakaryocytic leukemia (AMKL), usually in association with acquired GATA1 mutations. To gain insight into the mechanisms responsible for these abnormalities, we analyzed the hematopoietic development of the Ts1Cje mouse model of DS. Our analyses identified defects in mature blood cells, including macrocytosis and anemia, as well as abnormalities in fetal liver and bone marrow stem and progenitor cell function. Despite these defects, the Ts1Cje mice do not develop disease resembling either TMD or AMKL, and this was not altered by a loss of function allele of Gata1. Thus, loss of Gata1 and partial trisomy of chromosome 21 orthologs, when combined, do not appear to be sufficient to induce TMD or AMKL-like phenotypes in mice.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome de Down/complicaciones , Enfermedades Hematológicas/etiología , Envejecimiento/fisiología , Animales , Médula Ósea/patología , Células Cultivadas , Cromosomas Humanos Par 21 , Síndrome de Down/genética , Síndrome de Down/mortalidad , Síndrome de Down/patología , Factor de Transcripción GATA1/genética , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/mortalidad , Enfermedades Hematológicas/patología , Células Madre Hematopoyéticas/patología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Bazo/patología , Análisis de Supervivencia , Trombocitosis/patología
9.
Artículo en Inglés | MEDLINE | ID: mdl-34649968

RESUMEN

Nevus sebaceous syndrome (NSS) is a rare, multisystem neurocutaneous disorder, characterized by a congenital nevus, and may include brain malformations such as hemimegalencephaly or focal cortical dysplasia, ocular, and skeletal features. It has been associated with several eponyms including Schimmelpenning and Jadassohn. The isolated skin lesion, nevus sebaceous, is associated with postzygotic variants in HRAS or KRAS in all individuals studied. The RAS proteins encode a family of GTPases that form part of the RAS/MAPK signaling pathway, which is critical for cell cycle regulation and differentiation during development. We studied an individual with nevus sebaceous syndrome with an extensive nevus sebaceous, epilepsy, intellectual disability, and hippocampal sclerosis without pathological evidence of a brain malformation. We used high-depth gene panel sequencing and droplet digital polymerase chain reaction (PCR) to detect and quantify RAS/MAPK gene variants in nevus sebaceous and temporal lobe tissue collected during plastic and epilepsy surgery, respectively. A mosaic KRAS c.34G > T; p.(Gly12Cys) variant, also known as G12C, was detected in nevus sebaceous tissue at 25% variant allele fraction (VAF), at the residue most commonly substituted in KRAS Targeted droplet digital PCR validated the variant and quantified the mosaicism in other tissues. The variant was detected at 33% in temporal lobe tissue but was absent from blood and healthy skin. We provide molecular confirmation of the clinical diagnosis of NSS. Our data extends the histopathological spectrum of KRAS G12C mosaicism beyond nevus sebaceous to involve brain tissue and, more specifically, hippocampal sclerosis.


Asunto(s)
Nevo , Proteínas Proto-Oncogénicas p21(ras) , Encéfalo , Humanos , Recurrencia Local de Neoplasia , Proteínas ras
10.
J Mol Neurosci ; 67(4): 632-642, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30758748

RESUMEN

Notch signalling pathway is involved in the proliferation of neural progenitor cells (NPCs), to inhibit neuronal cell commitment and to promote glial cell fate. Notch protein is cleaved by gamma-secretase, a multisubunit transmembrane protein complex that releases the Notch intracellular domain (NICD) and subsequently activates the downstream targets. Down syndrome (DS) individuals exhibit an increased number of glial cells (particularly astrocytes), and reduced number of neurons suggesting the involvement of Notch signalling pathway in the neurogenic-to-gliogenic shift in DS brain. Ts1Cje is a DS mouse model that exhibit similar neuropathology to human DS individuals. To date, the spatiotemporal gene expression of the Notch and gamma-secretase genes have not been characterised in Ts1Cje mouse brain. Understanding the expression pattern of Notch and gamma-secretase genes may provide a better understanding of the underlying mechanism that leads to the shift. Gene expression analysis using RT-qPCR was performed on early embryonic and postnatal development of DS brain. In the developing mouse brain, mRNA expression analysis showed that gamma-secretase members (Psen1, Pen-2, Aph-1b, and Ncstn) were not differentially expressed. Notch2 was found to be downregulated in the developing Ts1Cje brain samples. Postnatal gene expression study showed complex expression patterns and Notch1 and Notch2 genes were found to be significantly downregulated in the hippocampus at postnatal day 30. Results from RT-qPCR analysis from E15.5 neurosphere culture showed an increase of expression of Psen1, and Aph-1b but downregulation of Pen-2 and Ncstn genes. Gamma-secretase activity in Ts1Cje E15.5 neurospheres was significantly increased by fivefold. In summary, the association and the role of Notch and gamma-secretase gene expression throughout development with neurogenic-to-gliogenic shift in Ts1Cje remain undefined and warrant further validation.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/genética , Síndrome de Down/metabolismo , Hipocampo/metabolismo , Receptores Notch/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Notch/metabolismo , Transducción de Señal
11.
Genom Data ; 2: 314-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26484118

RESUMEN

The Ts1Cje mouse model of Down syndrome (DS) has partial trisomy of mouse chromosome 16 (MMU16), which is syntenic to human chromosome 21 (HSA21). It develops various neuropathological features demonstrated by DS patients such as reduced cerebellar volume [1] and altered hippocampus-dependent learning and memory [2,3]. To understand the global gene expression effect of the partially triplicated MMU16 segment on mouse brain development, we performed the spatiotemporal transcriptome analysis of Ts1Cje and disomic control cerebral cortex, cerebellum and hippocampus harvested at four developmental time-points: postnatal day (P)1, P15, P30 and P84. Here, we provide a detailed description of the experimental and analysis procedures of the microarray dataset, which has been deposited in the Gene Expression Omnibus (GSE49050) database.

12.
Sci Rep ; 3: 1659, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23584600

RESUMEN

Melanoma patients with BRAF mutations respond to treatment with vemurafenib, thus creating a need for accurate testing of BRAF mutation status. We carried out a blinded study to evaluate various BRAF mutation testing methodologies in the clinical setting. Formalin-fixed, paraffin-embedded melanoma samples were macrodissected before screening for mutations using Sanger sequencing, single-strand conformation analysis (SSCA), high resolution melting analysis (HRM) and competitive allele-specific TaqMan® PCR (CAST-PCR). Concordance of 100% was observed between the Sanger sequencing, SSCA and HRM techniques. CAST-PCR gave rapid and accurate results for the common V600E and V600K mutations, however additional assays are required to detect rarer BRAF mutation types found in 3-4% of melanomas. HRM and SSCA followed by Sanger sequencing are effective two-step strategies for the detection of BRAF mutations in the clinical setting. CAST-PCR was useful for samples with low tumour purity and may also be a cost-effective and robust method for routine diagnostics.


Asunto(s)
Análisis Mutacional de ADN/métodos , Melanoma/genética , Adhesión en Parafina/métodos , Polimorfismo de Nucleótido Simple/genética , Proteínas Proto-Oncogénicas B-raf/genética , Análisis de Secuencia de ADN/métodos , Australia , Femenino , Formaldehído , Humanos , Masculino , Método Simple Ciego , Fijación del Tejido/métodos
13.
Methods Mol Biol ; 791: 33-53, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21913070

RESUMEN

Bisulphite pyrosequencing is a quantitative methodology for the investigation of DNA methylation of sequences up to 100-bp in length. Biotin-labelled, single-stranded PCR products generated from bisulphite-treated DNA are used as a template with an internal primer to perform the pyrosequencing reaction. Nucleotides are added in a predetermined order in each pyrosequencing cycle and the amount of incorporated nucleotide results in a proportional emission of light. DNA methylation ratios are calculated from the levels of light emitted from each nucleotide incorporated at individual CpG positions in a strand-dependent manner. The methylation detection limit at individual CpG sites is approximately 5% and the results are displayed as an average methylation level for each CpG position assayed across all amplification products generated during a PCR reaction. As a consequence, bisulphite pyrosequencing allows the identification of heterogeneous DNA methylation patterns but does not provide information at a single allele resolution. This methodology is suited to analyse short DNA sequences such as those typically extracted from formalin-fixed paraffin-embedded specimens. Nevertheless, longer PCR products can be sequenced by serial bisulphite pyrosequencing, which utilises tandem assays along the amplicon. The general information provided is applicable for all formats of current pyrosequencing instruments, however, a specific protocol for the PyroMark Q24 instrument is provided.


Asunto(s)
Metilación de ADN/genética , Análisis de Secuencia de ADN/métodos , Sulfitos/farmacología , Metilación de ADN/efectos de los fármacos , Cartilla de ADN/genética , Electroforesis en Gel de Agar , Reacción en Cadena de la Polimerasa
14.
PLoS One ; 6(2): e16831, 2011 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21347319

RESUMEN

BACKGROUND: Hyperplastic Polyposis Syndrome (HPS) is a condition associated with multiple serrated polyps, and an increased risk of colorectal cancer (CRC). At least half of CRCs arising in HPS show a CpG island methylator phenotype (CIMP), potentially linked to aberrant DNA methyltransferase (DNMT) activity. CIMP is associated with methylation of tumor suppressor genes including regulators of DNA mismatch repair (such as MLH1, MGMT), and negative regulators of Wnt signaling (such as WIF1). In this study, we investigated the potential for interaction of genetic and epigenetic variation in DNMT genes, in the aetiology of HPS. METHODS: We utilized high resolution melting (HRM) analysis to screen 45 cases with HPS for novel sequence variants in DNMT1, DNMT3A, DNMT3B, and DNMT3L. 21 polyps from 13 patients were screened for BRAF and KRAS mutations, with assessment of promoter methylation in the DNMT1, DNMT3A, DNMT3B, DNMT3L MLH1, MGMT, and WIF1 gene promoters. RESULTS: No pathologic germline mutations were observed in any DNA-methyltransferase gene. However, the T allele of rs62106244 (intron 10 of DNMT1 gene) was over-represented in cases with HPS (p<0.01) compared with population controls. The DNMT1, DNMT3A and DNMT3B promoters were unmethylated in all instances. Interestingly, the DNMT3L promoter showed low levels of methylation in polyps and normal colonic mucosa relative to matched disease free cells with methylation level negatively correlated to expression level in normal colonic tissue. DNMT3L promoter hypomethylation was more often found in polyps harbouring KRAS mutations (p = 0.0053). BRAF mutations were common (11 out of 21 polyps), whilst KRAS mutations were identified in 4 of 21 polyps. CONCLUSIONS: Genetic or epigenetic alterations in DNMT genes do not appear to be associated with HPS, but further investigation of genetic variation at rs62106244 is justified given the high frequency of the minor allele in this case series.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Epigénesis Genética , Poliposis Intestinal/enzimología , Poliposis Intestinal/genética , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales/genética , Islas de CpG/genética , Metilación de ADN/genética , Exones/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Desnaturalización de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Temperatura de Transición , Proteínas ras/genética
15.
PLoS One ; 5(7): e11561, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20661276

RESUMEN

BACKGROUND: Down syndrome (DS) individuals suffer mental retardation with further cognitive decline and early onset Alzheimer's disease. METHODOLOGY/PRINCIPAL FINDINGS: To understand how trisomy 21 causes these neurological abnormalities we investigated changes in gene expression networks combined with a systematic cell lineage analysis of adult neurogenesis using the Ts1Cje mouse model of DS. We demonstrated down regulation of a number of key genes involved in proliferation and cell cycle progression including Mcm7, Brca2, Prim1, Cenpo and Aurka in trisomic neurospheres. We found that trisomy did not affect the number of adult neural stem cells but resulted in reduced numbers of neural progenitors and neuroblasts. Analysis of differentiating adult Ts1Cje neural progenitors showed a severe reduction in numbers of neurons produced with a tendency for less elaborate neurites, whilst the numbers of astrocytes was increased. CONCLUSIONS/SIGNIFICANCE: We have shown that trisomy affects a number of elements of adult neurogenesis likely to result in a progressive pathogenesis and consequently providing the potential for the development of therapies to slow progression of, or even ameliorate the neuronal deficits suffered by DS individuals.


Asunto(s)
Síndrome de Down/metabolismo , Síndrome de Down/patología , Redes Reguladoras de Genes/genética , Neurogénesis/fisiología , Animales , Apoptosis/genética , Apoptosis/fisiología , Aurora Quinasa A , Aurora Quinasas , Proteína BRCA2/genética , Proteínas de Ciclo Celular/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Células Cultivadas , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Síndrome de Down/genética , Femenino , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Componente 7 del Complejo de Mantenimiento de Minicromosoma , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Serina-Treonina Quinasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/citología , Células Madre/metabolismo , Trisomía/genética
16.
Genome Biol ; 10(10): R104, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19799774

RESUMEN

BACKGROUND: Development of the cerebral cortex requires highly specific spatio-temporal regulation of gene expression. It is proposed that transcriptome profiling of the cerebral cortex at various developmental time points or regions will reveal candidate genes and associated molecular pathways involved in cerebral corticogenesis. RESULTS: Serial analysis of gene expression (SAGE) libraries were constructed from C57BL/6 mouse cerebral cortices of age embryonic day (E) 15.5, E17.5, postnatal day (P) 1.5 and 4 to 6 months. Hierarchical clustering analysis of 561 differentially expressed transcripts showed regionalized, stage-specific and co-regulated expression profiles. SAGE expression profiles of 70 differentially expressed transcripts were validated using quantitative RT-PCR assays. Ingenuity pathway analyses of validated differentially expressed transcripts demonstrated that these transcripts possess distinctive functional properties related to various stages of cerebral corticogenesis and human neurological disorders. Genomic clustering analysis of the differentially expressed transcripts identified two highly transcribed genomic loci, Sox4 and Sox11, during embryonic cerebral corticogenesis. These loci feature unusual overlapping sense and antisense transcripts with alternative polyadenylation sites and differential expression. The Sox4 and Sox11 antisense transcripts were highly expressed in the brain compared to other mouse organs and are differentially expressed in both the proliferating and differentiating neural stem/progenitor cells and P19 (embryonal carcinoma) cells. CONCLUSIONS: We report validated gene expression profiles that have implications for understanding the associations between differentially expressed transcripts, novel targets and related disorders pertaining to cerebral corticogenesis. The study reports, for the first time, spatio-temporally regulated Sox4 and Sox11 antisense transcripts in the brain, neural stem/progenitor cells and P19 cells, suggesting they have an important role in cerebral corticogenesis and neuronal/glial cell differentiation.


Asunto(s)
Corteza Cerebral/embriología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/genética , ARN sin Sentido/genética , Factores de Transcripción SOXC/genética , Envejecimiento/genética , Animales , Línea Celular , Corteza Cerebral/metabolismo , Análisis por Conglomerados , Embrión de Mamíferos/metabolismo , Sitios Genéticos , Genoma/genética , Hibridación in Situ , Ratones , Familia de Multigenes/genética , Neuronas/metabolismo , Organogénesis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXC/metabolismo , Programas Informáticos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA