Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 24(R1): R17-23, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26113644

RESUMEN

Current genetic and molecular evidence best supports an epigenetic mechanism for facioscapulohumeral muscular dystrophy (FSHD), whereby de-repression of the D4Z4 macrosatellite array leads to aberrant expression of the DUX4 transcription factor in skeletal muscle. This de-repression is triggered by either array contraction or (more rarely) by mutation of the SMCHD1 (structural maintenance of chromosomes flexible hinge domain containing 1) gene. Activation of DUX4 targets, including germline genes and several mammalian retrotransposons, then drives pathogenesis. A direct role for DUX4 mRNA in suppression of nonsense-mediated decay pathways has recently been demonstrated and may also contribute to muscle pathology. Loss of D4Z4 repression in FSHD is observed as hypomethylation of the array accompanied by loss of repressive chromatin marks. The molecular mechanisms of D4Z4 repression are poorly understood, but recent data have identified an Argonaute (AGO)-dependent siRNA pathway. Targeting this pathway by exogenous siRNAs could be a therapeutic strategy for FSHD.


Asunto(s)
Epigénesis Genética , Proteínas de Homeodominio/genética , Distrofia Muscular Facioescapulohumeral/genética , Factores de Transcripción/genética , Animales , Proteínas Argonautas/metabolismo , Proteínas Cromosómicas no Histona/genética , Factores Eucarióticos de Iniciación/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Mutación , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
2.
J Biol Chem ; 288(1): 355-67, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23148228

RESUMEN

Changes in cytoplasmic Ca(2+) concentration, resulting from activation of intracellular Ca(2+) channels within the endoplasmic reticulum, regulate several aspects of cellular growth and differentiation. Ca(2+) homeostasis endoplasmic reticulum protein (CHERP) is a ubiquitously expressed protein that has been proposed as a regulator of both major families of endoplasmic reticulum Ca(2+) channels, inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and ryanodine receptors (RyRs), with resulting effects on mitotic cycling. However, the manner by which CHERP regulates intracellular Ca(2+) channels to impact cellular growth is unknown. Here, we challenge previous findings that CHERP acts as a direct cytoplasmic regulator of IP(3)Rs and RyRs and propose that CHERP acts in the nucleus to impact cellular proliferation by regulating the function of the U2 snRNA spliceosomal complex. The previously reported effects of CHERP on cellular growth therefore are likely indirect effects of altered spliceosomal function, consistent with prior data showing that loss of function of U2 snRNP components can interfere with cell growth and induce cell cycle arrest.


Asunto(s)
Calcio/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Nucleosomas/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Secuencia de Aminoácidos , Señalización del Calcio , Ciclo Celular , Membrana Celular/metabolismo , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Homeostasis , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células Jurkat , Datos de Secuencia Molecular , Mutación , Interferencia de ARN , Ribonucleoproteínas/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Empalmosomas/metabolismo , Fracciones Subcelulares/metabolismo
3.
Chromosoma ; 121(5): 489-97, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22903800

RESUMEN

Macrosatellites are large polymorphic tandem arrays. The human subtelomeric macrosatellite D4Z4 has 11-150 repeats, each containing a copy of the intronless DUX4 gene. DUX4 is linked to facioscapulohumeral muscular dystrophy, but its normal function is unknown. The DUX gene family includes DUX4, the intronless Dux macrosatellites in rat and mouse, as well as several intron-containing members (DUXA, DUXB, Duxbl, and DUXC). Here, we report that the genomic organization (though not the syntenic location) of primate DUX4 is conserved in the Afrotheria. In primates and Afrotheria, DUX4 arose by retrotransposition of an ancestral intron-containing DUXC, which is itself not found in these species. Surprisingly, we discovered a similar macrosatellite organization for DUXC in cow and other Laurasiatheria (dog, alpaca, dolphin, pig, and horse), and in Xenarthra (sloth). Therefore, DUX4 and Dux are not the only DUX gene macrosatellites. Our data suggest a new retrotransposition-displacement model for the evolution of intronless DUX macrosatellites.


Asunto(s)
Evolución Molecular , Proteínas de Homeodominio/genética , Mamíferos/genética , Secuencias Repetidas en Tándem , Animales , Bovinos , Cromosomas de los Mamíferos/genética , Humanos , Ratones , Datos de Secuencia Molecular
4.
Stem Cells ; 30(10): 2330-41, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22887880

RESUMEN

The dystrophin-associated glycoprotein complex (DGC) is found at the muscle fiber sarcolemma and forms an essential structural link between the basal lamina and internal cytoskeleton. In a set of muscular dystrophies known as the dystroglycanopathies, hypoglycosylation of the DGC component α-dystroglycan results in reduced binding to basal lamina components, a loss in structural stability, and repeated cycles of muscle fiber degeneration and regeneration. The satellite cells are the key stem cells responsible for muscle repair and reside between the basal lamina and sarcolemma. In this study, we aimed to determine whether pathological changes associated with the dystroglycanopathies affect satellite cell function. In the Large(myd) mouse dystroglycanopathy model, satellite cells are present in significantly greater numbers but display reduced proliferation on their native muscle fibers in vitro, compared with wild type. However, when removed from their fiber, proliferation in culture is restored to that of wild type. Immunohistochemical analysis of Large(myd) muscle reveals alterations to the basal lamina and interstitium, including marked disorganization of laminin, upregulation of fibronectin and collagens. Proliferation and differentiation of wild-type satellite cells is impaired when cultured on substrates such as collagen and fibronectin, compared with laminins. When engrafted into irradiated tibialis anterior muscles of mdx-nude mice, wild-type satellite cells expanded on laminin contribute significantly more to muscle regeneration than those expanded on fibronectin. These results suggest that defects in α-dystroglycan glycosylation are associated with an alteration in the satellite cell niche, and that regenerative potential in the dystroglycanopathies may be perturbed.


Asunto(s)
Membrana Basal/metabolismo , Distroglicanos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Animal/metabolismo , Sarcolema/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Animales , Membrana Basal/patología , Diferenciación Celular , Proliferación Celular , Colágeno/química , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibronectinas/química , Fibronectinas/metabolismo , Glicosilación , Humanos , Laminina/química , Laminina/metabolismo , Ratones , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Distrofia Muscular Animal/patología , Unión Proteica , Sarcolema/patología , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/trasplante
5.
Glycobiology ; 22(5): 662-75, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22241827

RESUMEN

α-Dystroglycan (DG) is a key component of the dystrophin-glycoprotein complex. Aberrant glycosylation of the protein has been linked to various forms of congenital muscular dystrophy. Unusually α-DG has previously been demonstrated to be modified with both O-N-acetylgalactosamine and O-mannose initiated glycans. In the present study, Fc-tagged recombinant mouse α-DG was expressed and purified from human embryonic kidney 293T cells. α-DG glycopeptides were characterized by glycoproteomic strategies using both nano-liquid chromatography matrix-assisted laser desorption ionization and electrospray tandem mass spectrometry. A total of 14 different peptide sequences and 38 glycopeptides were identified which displayed heterogeneous O-glycosylation. These data provide new insights into the complex domain-specific O-glycosylation of α-DG.


Asunto(s)
Distroglicanos/química , Proteómica , Secuencia de Aminoácidos , Animales , Línea Celular , Cromatografía Liquida , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
6.
Biochem Soc Trans ; 39(1): 336-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21265799

RESUMEN

During the last 10 years it has become apparent that a significant subset of inherited muscular dystrophy is caused by errors in the glycosylation of α-dystroglycan. Many of these dystrophies are also associated with abnormalities of the central nervous system. Dystroglycan has to be fully glycosylated in order bind to its ligands. To date, six genes have been shown to be essential for functional dystroglycan glycosylation and most, if not all, of these genes act in the formation of O-mannosyl glycans. Genetic heterogeneity indicates that other genes are involved in this pathway. Identification of these additional genes would increase our understanding of this specific and essential glycosylation pathway.


Asunto(s)
Biomarcadores/metabolismo , Distroglicanos/metabolismo , Distrofias Musculares/metabolismo , Polisacáridos/metabolismo , Distroglicanos/química , Glicosilación , Humanos , Laminina/metabolismo , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Polisacáridos/química
7.
J Neurosci ; 29(12): 3908-19, 2009 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-19321787

RESUMEN

Animal and plant cells compartmentalize to perform morphogenetic functions. Compartmentalization of myelin-forming Schwann cells may favor elongation of myelin segments to the size required for efficient conduction of nerve impulses. Compartments in myelinated fibers were described by Ramón y Cajal and depend on periaxin, mutated in the hereditary neuropathy Charcot-Marie-Tooth disease type 4F (Charcot-Marie-Tooth 4F). Lack of periaxin in mice causes loss of compartments, formation of short myelin segments (internodes) and reduced nerve conduction velocity. How compartments are formed and maintained, and their relevance to human neuropathies is largely unknown. Here we show that formation of compartments around myelin is driven by the actin cytoskeleton, and maintained by actin and tubulin fences through linkage to the dystroglycan complex. Compartmentalization and establishment of correct internodal length requires the presence of glycosylated dystroglycan, utrophin and extracellular laminin-2/211. A neuropathic patient with reduced internodal length and nerve conduction velocity because of absence of laminin-2/211 (congenital muscular dystrophy 1A) also shows abnormal compartmentalization. These data link formation of compartments through a laminin2, dystroglycan, utrophin, actin axis to internodal length, and provide a common pathogenetic mechanism for two inherited human neuropathies. Other cell types may exploit dystroglycan complexes in similar fashions to create barriers and compartments.


Asunto(s)
Compartimento Celular/fisiología , Distroglicanos/fisiología , Laminina/fisiología , Vaina de Mielina/fisiología , Utrofina/fisiología , Actinas/fisiología , Animales , Distroglicanos/genética , Glicosilación , Laminina/genética , Ratones , Ratones Noqueados , Microtúbulos/ultraestructura , Distrofias Musculares/congénito , Distrofias Musculares/patología , Fibras Nerviosas Mielínicas/ultraestructura , Células de Schwann/ultraestructura , Nervio Sural/ultraestructura , Tubulina (Proteína)/fisiología , Utrofina/genética
8.
Biochim Biophys Acta ; 1792(9): 853-61, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19539754

RESUMEN

The dystroglycanopathies are a group of inherited muscular dystrophies that have a common underlying mechanism, hypoglycosylation of the extracellular receptor alpha-dystroglycan. Many of these disorders are also associated with defects in the central nervous system and the eye. Defects in alpha-dystroglycan may also play a role in cancer progression. This review discusses the six dystroglycanopathy genes identified so far, their known or proposed roles in dystroglycan glycosylation and their relevance to human disease, and some of animal models now available for the study of the dystroglycanopathies.


Asunto(s)
Distroglicanos/metabolismo , Distrofias Musculares/metabolismo , Animales , Drosophila , Epigénesis Genética , Glicosilación , Humanos , Laminina/metabolismo , Manosiltransferasas/metabolismo , Proteínas de la Membrana/genética , Modelos Animales , Distrofias Musculares/genética , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Neoplasias/genética , Pentosiltransferasa , Proteínas/genética , Virosis/genética , Pez Cebra
9.
BMC Evol Biol ; 10: 364, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-21110847

RESUMEN

BACKGROUND: DUX4 is causally involved in the molecular pathogenesis of the neuromuscular disorder facioscapulohumeral muscular dystrophy (FSHD). It has previously been proposed to have arisen by retrotransposition of DUXC, one of four known intron-containing DUX genes. Here, we investigate the evolutionary history of this multi-member double-homeobox gene family in eutherian mammals. RESULTS: Our analysis of the DUX family shows the distribution of different homologues across the mammalian class, including events of secondary loss. Phylogenetic comparison, analysis of gene structures and information from syntenic regions confirm the paralogous relationship of Duxbl and DUXB and characterize their relationship with DUXA and DUXC. We further identify Duxbl pseudogene orthologues in primates. A survey of non-mammalian genomes identified a single-homeobox gene (sDUX) as a likely representative homologue of the mammalian DUX ancestor before the homeobox duplication. Based on the gene structure maps, we suggest a possible mechanism for the generation of the DUX gene structure. CONCLUSIONS: Our study underlines how secondary loss of orthologues can obscure the true ancestry of individual gene family members. Their relationships should be considered when interpreting the relevance of functional data from DUX4 homologues such as Dux and Duxbl to FSHD.


Asunto(s)
Evolución Molecular , Proteínas de Homeodominio/genética , Mamíferos/genética , Filogenia , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Seudogenes , Alineación de Secuencia , Análisis de Secuencia de Proteína , Sintenía
10.
Glycoconj J ; 26(3): 349-57, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18773291

RESUMEN

Dystroglycan is an integral member of the skeletal muscle dystrophin glycoprotein complex, which links dystrophin to proteins in the extracellular matrix. Recently, a group of human muscular dystrophy disorders have been demonstrated to result from defective glycosylation of the alpha-dystroglycan subunit. Genetic studies of these diseases have identified six genes that encode proteins required for the synthesis of essential carbohydrate structures on dystroglycan. Here we highlight their known or postulated functions. This glycosylation pathway appears to be highly specific (dystroglycan is the only substrate identified thus far) and to be highly conserved during evolution.


Asunto(s)
Distroglicanos/metabolismo , Distrofias Musculares/metabolismo , Secuencia de Aminoácidos , Animales , Distroglicanos/química , Distroglicanos/genética , Evolución Molecular , Glicosilación , Humanos , Datos de Secuencia Molecular , Distrofias Musculares/genética , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/genética
11.
Genomics ; 92(3): 159-67, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18632251

RESUMEN

Mutations in human genes encoding proteins involved in alpha-dystroglycan glycosylation result in dystroglycanopathies: severe congenital muscular dystrophy phenotypes often accompanied by CNS abnormalities and ocular defects. We have identified the zebrafish orthologues of the seven known genes in this pathway and examined their expression during embryonic development. Zebrafish Large, POMT1, POMT2, POMGnT1, Fukutin, and FKRP show in situ hybridization patterns similar to those of dystroglycan, with broad expression throughout early development. By 30 h postfertilization (hpf), transcripts of all these genes are most prominent in the CNS, eye, and muscle, tissues that are predominantly affected in the dystroglycanopathies. In contrast, Large2 expression is more restricted and by 30 hpf is confined to the lens, cerebellum, and pronephric duct. We show that the monoclonal antibody IIH6, which recognizes a glycoform of dystroglycan, also detects the zebrafish protein. Injection of morpholino oligonucleotides against zebrafish Large2 resulted in loss of IIH6 immunostaining. These data indicate that the dystroglycan glycosylation pathway is conserved in zebrafish and suggest this organism is likely to be a useful model system for functional studies.


Asunto(s)
Vías Biosintéticas , Distroglicanos/metabolismo , Glicosiltransferasas/genética , Proteínas de Pez Cebra/genética , Animales , Distroglicanos/análisis , Glicosilación , Glicosiltransferasas/metabolismo , Humanos , Datos de Secuencia Molecular , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
Biochim Biophys Acta ; 1573(3): 216-24, 2002 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-12417403

RESUMEN

The myodystrophy (myd) mutation arose spontaneously and has an autosomal recessive mode of inheritance. Homozygous mutant mice display a severe, progressive muscular dystrophy. Using a positional cloning approach, we identified the causative mutation in myd as a deletion within the Large gene, which encodes a putative glycosyltransferase with two predicted catalytic domains. By immunoblotting, the alpha-subunit of dystroglycan, a key muscle membrane protein, is abnormal in myd mice. This aberrant protein might represent altered glycosylation of the protein and contribute to the muscular dystrophy phenotype. Our results are discussed in the light of recent reports describing mutations in other glycosyltransferase genes in several forms of human muscular dystrophy.


Asunto(s)
Distrofias Musculares/enzimología , N-Acetilglucosaminiltransferasas/fisiología , Proteínas de Neoplasias/fisiología , Secuencia de Aminoácidos , Animales , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/fisiología , Distroglicanos , Glicosilación , Humanos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiología , Ratones , Ratones Endogámicos mdx , Datos de Secuencia Molecular , Distrofias Musculares/genética , N-Acetilglucosaminiltransferasas/genética , Proteínas de Neoplasias/genética , Fenotipo
13.
Neuromuscul Disord ; 15(5): 331-5, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15833424

RESUMEN

The myodystrophy (Large(myd)) mouse has a spontaneous loss of function mutation in a putative glycosyltransferase gene (Large). Mutations in the human gene (LARGE) have been described in congenital muscular dystrophy type 1D (MDC1D). Mutations in four other genes that encode known or putative glycosylation enzymes (POMT1, POMGnT1, fukutin and FKRP) are also associated with muscular dystrophy. In all these diseases hypoglycosylation of alpha-dystroglycan, and consequent loss of ligand binding, is a common pathomechanism. Currently, the Large(myd) mouse is the principal animal model for studying the underlying molecular mechanisms of this group of disorders. Over-expression of LARGE in cells from patients with mutations in POMT1 or POMGnT1 results in hyperglycosylation of alpha-dystroglycan and restoration of laminin binding. Thus, LARGE is a potential therapeutic target. Here, we define the intronic deletion breakpoints of the Large(myd) mutation and describe a simple, PCR-based diagnostic assay, facilitating the study of this important animal model.


Asunto(s)
Glicosiltransferasas/deficiencia , Glicosiltransferasas/genética , Distrofia Muscular Animal/genética , Mutación , Distrofia Miotónica/genética , Animales , Clonación Molecular/métodos , Modelos Animales de Enfermedad , Genotipo , Glicosilación , Humanos , Ratones , Mutación/genética , Distrofia Miotónica/diagnóstico , Reacción en Cadena de la Polimerasa , Unión Proteica/fisiología
14.
Neuromuscul Disord ; 25(1): 32-42, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25387694

RESUMEN

We generated a novel monoclonal antibody, DAG-6F4, against alpha-dystroglycan which immunolabels the sarcolemma in human muscle biopsies. Its seven amino-acid epitope, PNQRPEL, was identified using phage-displayed peptides and is located immediately after the highly-glycosylated mucin domain of alpha-dystroglycan. On Western blots of recombinant alpha-dystroglycan, epitope accessibility was reduced, but not entirely prevented, by glycosylation. DAG-6F4 immunolabelling was markedly reduced in muscle biopsies from Duchenne muscular dystrophy patients consistent with disruption of the dystroglycan complex. In a range of dystroglycanopathy patients with reduced/altered glycosylation, staining by DAG-6F4 was often less reduced than staining by IIH6 (antibody against the glycan epitope added by LARGE and commonly used to identify glycosylated alpha-dystroglycan). Whereas IIH6 was reduced in all patients, DAG-6F4 was hardly changed in a LARGE patient, less reduced than IIH6 in limb-girdle muscular dystrophy type 2I, but as reduced as IIH6 in some congenital muscular dystrophy patients. Although absence of the LARGE-dependent laminin-binding site appears not to affect alpha-dystroglycan stability at the sarcolemma, the results suggest that further reduction in aDG glycosylation may reduce its stability. These studies suggest that DAG-6F4 may be a useful addition to the antibody repertoire for evaluating the dystroglycan complex in neuromuscular disorders.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Distroglicanos/análisis , Distrofia Muscular de Duchenne/patología , Adulto , Secuencia de Aminoácidos , Animales , Preescolar , Distroglicanos/metabolismo , Glicosilación , Células HEK293 , Humanos , Inmunohistoquímica , Lactante , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Músculo Esquelético/inmunología , Distrofia Muscular de Duchenne/diagnóstico , Sarcolema/inmunología
15.
Gene ; 305(1): 91-100, 2003 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-12594045

RESUMEN

The splicing of nascent mRNA precursors is an essential step for the expression of all intron-containing eukaryotic genes. Removal of intron sequences from nascent transcripts is mediated by the spliceosome, a large multicomponent complex. We describe here the identification of two genes encoding related, putative splicing factors on human chromosome 19p13.11, SF4 (splicing factor 4) and SFRS14 (splicing factor arginine/serine-rich 14). Both genes encode proteins containing a SURP motif; this domain is found in several splicing proteins including Drosophila alternative splicing regulator, suppressor-of-white-apricot (SWAP) and the yeast splicing factor, prp21p. In addition, SF4 and SFRS14 contain a G-patch domain at their C-termini, a motif present in a large number of eukaryotic RNA-binding proteins. SFRS14 also contains an N-terminal region that is rich in arginine/serine residues, suggesting SFRS14 is a novel member of the SR-related family of pre-mRNA processing factors. We have also identified the mouse orthologues of SF4 and SFRS14, based on conserved domain organization and high sequence similarity. Interestingly, SFRS14 undergoes alternative 3'-end processing events that are conserved between human and mouse, suggesting a functional significance.


Asunto(s)
Cromosomas Humanos Par 19/genética , Empalme del ARN , Proteínas de Unión al ARN/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Encéfalo/embriología , Encéfalo/metabolismo , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Exones , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes/genética , Humanos , Intrones , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares , Factores de Empalme de ARN , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Factores de Empalme Serina-Arginina
16.
Biochem Soc Symp ; (69): 105-15, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12655778

RESUMEN

The implementation of highly sensitive and rapid mass spectrometric screening strategies for defining the glycosylation repertoires of organs in knockout mice is helping to reveal the roles that glycans play in health and disease. Thus novel glycosylation pathways have been uncovered in two such knockouts, namely alpha-mannosidase II null mice and UDP-N-acetylglucosamine: alpha 6-D-mannoside beta 1,2-N-acetylglucosaminyltransferase II null mice. This chapter documents the glycosylation profiles of a wide range of organs from the normal mouse which should facilitate future glycomics studies of knockout mice. Furthermore, we report applications of our screening technology in studies of the myodystrophy mouse and a human leukodystrophy.


Asunto(s)
Encéfalo/metabolismo , Distrofia Muscular Animal/metabolismo , Polisacáridos/metabolismo , Espectrometría de Masa Bombardeada por Átomos Veloces/métodos , Esfingolipidosis/metabolismo , Animales , Humanos , Ratones , Ratones Noqueados , Polisacáridos/química , Sensibilidad y Especificidad
17.
PLoS One ; 8(2): e57698, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23469052

RESUMEN

The organizer is one of the earliest structures to be established during vertebrate development and is crucial to subsequent patterning of the embryo. We have previously shown that the SoxB1 transcription factor, Sox3, plays a central role as a transcriptional repressor of zebrafish organizer gene expression. Recent data suggest that Fgf signaling has a positive influence on organizer formation, but its role remains to be fully elucidated. In order to better understand how Fgf signaling fits into the complex regulatory network that determines when and where the organizer forms, the relationship between the positive effects of Fgf signaling and the repressive effects of the SoxB1 factors must be resolved. This study demonstrates that both fgf3 and fgf8 are required for expression of the organizer genes, gsc and chd, and that SoxB1 factors (Sox3, and the zebrafish specific factors, Sox19a and Sox19b) can repress the expression of both fgf3 and fgf8. However, we also find that these SoxB1 factors inhibit the expression of gsc and chd independently of their repression of fgf expression. We show that ectopic expression of organizer genes induced solely by the inhibition of SoxB1 function is dependent upon the activation of fgf expression. These data allow us to describe a comprehensive signaling network in which the SoxB1 factors restrict organizer formation by inhibiting Fgf, Nodal and Wnt signaling, as well as independently repressing the targets of that signaling. The organizer therefore forms only where Nodal-induced Fgf signaling overlaps with Wnt signaling and the SoxB1 proteins are absent.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Organizadores Embrionarios/citología , Organizadores Embrionarios/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Animales , Secuencia Conservada , Evolución Molecular , Factor 3 de Crecimiento de Fibroblastos/genética , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Proteína Goosecoide/metabolismo , Humanos , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Regiones Promotoras Genéticas/genética
18.
Genome Med ; 4(3): 23, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22458537

RESUMEN

A significant proportion of severe, inherited congenital muscular dystrophies are due to aberrant glycosylation of the extracellular matrix receptor α-dystroglycan and a consequent lack of ligand-binding activity. A key member of this glycosylation pathway is the LARGE protein, which was originally identified through genome sequencing and genetic studies. Until recently, the biochemical activity of this enzyme proved frustratingly elusive, but a recent study shows that LARGE encodes a bifunctional glycosyltransferase that synthesizes a novel polysaccharide structure, which is required for functional dystroglycan. Identification of this structure should lead to development of new diagnostic tools and therapeutic strategies for these dystrophies.

19.
Eur J Hum Genet ; 20(9): 999-1003, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22378277

RESUMEN

We studied and validated facioscapulohumeral muscular dystrophy (FSHD) samples from patients without a D4Z4 contraction (FSHD2 or 'phenotypic FSHD'). For this, we developed non-radioactive protocols to test D4Z4 allele constitution and DNA methylation, and applied these to samples from the Coriell Institute Cell Repository. The D4Z4 sizing showed two related subjects to have classic chromosome 4 contraction-dependent FSHD1. A third sample (GM17726) did not have a short chromosome 4 fragment, and had been assigned as non-4q FSHD (FSHD2). We tested D4Z4 haplotype and methylation for this individual but found both to be inconsistent with this diagnosis. Using exome sequencing, we identified two known pathogenic mutations in CAPN3 (Arg490Gln and Thr184Argfs(*)36), indicating a case of LGMD2A rather than FSHD. Our study shows how a wrong diagnosis can easily be corrected by whole-exome sequencing by constraining the variant analysis to candidate genes after the data have been generated. This new way of 'diagnosis by sequencing' is likely to become common place in genetic diagnostic laboratories. We also publish a digoxigenin-labeled Southern protocol to test D4Z4 methylation. Our data supports hypomethylation as a good epigenetic predictor for FSHD2. The non-radioactive protocol will help to make this assay more accessible to clinical diagnostic laboratories and the wider FSHD research community.


Asunto(s)
Secuencia de Bases , Calpaína/genética , Proteínas Musculares/genética , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Muscular de Cinturas/genética , Distrofia Muscular Facioescapulohumeral/genética , Eliminación de Secuencia , Alelos , Bioensayo , Cromosomas Humanos Par 4 , Metilación de ADN , Diagnóstico Diferencial , Epigénesis Genética , Exoma , Femenino , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Datos de Secuencia Molecular , Distrofia Muscular Facioescapulohumeral/clasificación , Distrofia Muscular Facioescapulohumeral/diagnóstico , Linaje , Análisis de Secuencia de ADN
20.
Methods Enzymol ; 479: 367-86, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20816177

RESUMEN

The Large gene encodes a predicted glycosyltransferase of undefined biological activity. However, one important target of the protein is known, alpha-dystroglycan. This protein is a key component of the dystrophin-associated glycoprotein in skeletal muscle, which links cytoskeletal actin to the extracellular matrix (ECM), stabilizing the muscle sarcolemmal membrane. alpha-Dystroglycan binds to extracellular proteins such as laminin through a heavily glycosylated mucin-like domain. Functional Large protein is required for full glycosylation and ligand-binding activity of dystroglycan. The role of Large in this pathway was identified by positional cloning of the mutation in the myodystrophy mouse, an animal model of muscular dystrophy that also has defects in the central and peripheral nervous system and retinal abnormalities. Mice deficient in Large are models for a group of human disorders that have defective alpha-dystroglycan glycosylation.


Asunto(s)
Mutación , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Animales , Enfermedades del Sistema Nervioso Central/etiología , Enfermedades del Sistema Nervioso Central/genética , Modelos Animales de Enfermedad , Distroglicanos/metabolismo , Glicosilación , Humanos , Ligandos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA