Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Cell Biol ; 219(10)2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32668451

RESUMEN

Neuronal migration during development is necessary to form an ordered and functional brain. Postmitotic neurons require microtubules and dynein to move, but the mechanisms by which they contribute to migration are not fully characterized. Using tegmental hindbrain nuclei neurons in zebrafish embryos together with subcellular imaging, optogenetics, and photopharmacology, we show that, in vivo, the centrosome's position relative to the nucleus is not linked to greatest motility in this cell type. Nevertheless, microtubules, dynein, and kinesin-1 are essential for migration, and we find that interference with endosome formation or the Golgi apparatus impairs migration to a similar extent as disrupting microtubules. In addition, an imbalance in the traffic of the model cargo Cadherin-2 also reduces neuronal migration. These results lead us to propose that microtubules act as cargo carriers to control spatiotemporal protein distribution, which in turn controls motility. This adds crucial insights into the variety of ways that microtubules can support successful neuronal migration in vivo.


Asunto(s)
Cadherinas/genética , Desarrollo Embrionario/genética , Cinesinas/genética , Neuronas/metabolismo , Animales , Movimiento Celular/genética , Dineínas/genética , Embrión no Mamífero , Aparato de Golgi/genética , Proteínas de Microtúbulos/genética , Microtúbulos/genética , Proteínas Motoras Moleculares/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
2.
Nat Commun ; 10(1): 5220, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31745086

RESUMEN

The hepatopancreatic ductal (HPD) system connects the intrahepatic and intrapancreatic ducts to the intestine and ensures the afferent transport of the bile and pancreatic enzymes. Yet the molecular and cellular mechanisms controlling their differentiation and morphogenesis into a functional ductal system are poorly understood. Here, we characterize HPD system morphogenesis by high-resolution microscopy in zebrafish. The HPD system differentiates from a rod of unpolarized cells into mature ducts by de novo lumen formation in a dynamic multi-step process. The remodeling step from multiple nascent lumina into a single lumen requires active cell intercalation and myosin contractility. We identify key functions for EphB/EphrinB signaling in this dynamic remodeling step. Two EphrinB ligands, EphrinB1 and EphrinB2a, and two EphB receptors, EphB3b and EphB4a, control HPD morphogenesis by remodeling individual ductal compartments, and thereby coordinate the morphogenesis of this multi-compartment ductal system.


Asunto(s)
Conductos Biliares/metabolismo , Efrina-B1/metabolismo , Hepatopáncreas/metabolismo , Receptores de la Familia Eph/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Conductos Biliares/embriología , Diferenciación Celular/genética , Efrina-B1/genética , Efrina-B3/genética , Efrina-B3/metabolismo , Perfilación de la Expresión Génica , Hepatopáncreas/embriología , Ligandos , Morfogénesis/genética , Mutación , Unión Proteica , Receptores de la Familia Eph/genética , Transducción de Señal/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA