Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34983873

RESUMEN

Bottom trawling is widespread globally and impacts seabed habitats. However, risks from trawling remain unquantified at large scales in most regions. We address these issues by synthesizing evidence on the impacts of different trawl-gear types, seabed recovery rates, and spatial distributions of trawling intensity in a quantitative indicator of biotic status (relative amount of pretrawling biota) for sedimentary habitats, where most bottom-trawling occurs, in 24 regions worldwide. Regional average status relative to an untrawled state (=1) was high (>0.9) in 15 regions, but <0.7 in three (European) regions and only 0.25 in the Adriatic Sea. Across all regions, 66% of seabed area was not trawled (status = 1), 1.5% was depleted (status = 0), and 93% had status > 0.8. These assessments are first order, based on parameters estimated with uncertainty from meta-analyses; we recommend regional analyses to refine parameters for local specificity. Nevertheless, our results are sufficiently robust to highlight regions needing more effective management to reduce exploitation and improve stock sustainability and seabed environmental status-while also showing seabed status was high (>0.95) in regions where catches of trawled fish stocks meet accepted benchmarks for sustainable exploitation, demonstrating that environmental benefits accrue from effective fisheries management. Furthermore, regional seabed status was related to the proportional area swept by trawling, enabling preliminary predictions of regional status when only the total amount of trawling is known. This research advances seascape-scale understanding of trawl impacts in regions around the world, enables quantitative assessment of sustainability risks, and facilitates implementation of an ecosystem approach to trawl fisheries management globally.


Asunto(s)
Biota , Ecosistema , Explotaciones Pesqueras , Animales , Conservación de los Recursos Naturales , Peces , Geografía , Sedimentos Geológicos , Júpiter , Océanos y Mares , Dinámica Poblacional
2.
Proc Natl Acad Sci U S A ; 115(43): E10275-E10282, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30297399

RESUMEN

Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from <10% of seabed area in Australian and New Zealand waters, the Aleutian Islands, East Bering Sea, South Chile, and Gulf of Alaska to >50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when high-resolution spatial data are unavailable. If SAR was ≤0.1, as in 8 of 24 regions, there was >95% probability that >90% of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≤0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing.


Asunto(s)
Explotaciones Pesqueras/estadística & datos numéricos , Alaska , Animales , Australia , Biodiversidad , Chile , Ecosistema , Invertebrados/fisiología , Nueva Zelanda , Océanos y Mares , Alimentos Marinos/estadística & datos numéricos
3.
Biol Lett ; 14(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30068542

RESUMEN

Understanding links between habitat characteristics and foraging efficiency helps predict how environmental changes influence populations of top predators. This study examines whether measurements of prey (clupeids) availability varied over stratification gradients, and determined if any of those measurements coincided with aggregations of foraging seabirds (common guillemot Uria aalge and Manx shearwater Puffinus puffinus) in the Celtic Sea, UK. The probability of encountering foraging seabirds was highest around fronts between mixed and stratified water. Prey were denser and shallower in mixed water, whilst encounters with prey were most frequent in stratified water. Therefore, no single measurement of increased prey availability coincided with the location of fronts. However, when considered in combination, overall prey availability was highest in these areas. These results show that top predators may select foraging habitats by trading-off several measurements of prey availability. By showing that top predators select areas where prey switch between behaviours, these results also identify a mechanism that could explain the wider importance of edge habitats for these taxa. As offshore developments (e.g. marine renewable energy installations) change patterns of stratification, their construction may have consequences on the foraging efficiency of seabirds.


Asunto(s)
Aves/fisiología , Ecosistema , Modelos Biológicos , Conducta Predatoria/fisiología , Distribución Animal , Animales , Conducta Animal , Océanos y Mares , Reino Unido
4.
Glob Chang Biol ; 21(1): 117-29, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25179407

RESUMEN

Climate change is a major threat to biodiversity and distributions shifts are one of the most significant threats to global warming, but the extent to which these shifts keep pace with a changing climate is yet uncertain. Understanding the factors governing range shifts is crucial for conservation management to anticipate patterns of biodiversity distribution under future anthropogenic climate change. Soft-sediment invertebrates are a key faunal group because of their role in marine biogeochemistry and as a food source for commercial fish species. However, little information exists on their response to climate change. Here, we evaluate changes in the distribution of 65 North Sea benthic invertebrate species between 1986 and 2000 by examining their geographic, bathymetric and thermal niche shifts and test whether species are tracking their thermal niche as defined by minimum, mean or maximum sea bottom (SBT) and surface (SST) temperatures. Temperatures increased in the whole North Sea with many benthic invertebrates showing north-westerly range shifts (leading/trailing edges as well as distribution centroids) and deepening. Nevertheless, distribution shifts for most species (3.8-7.3 km yr(-1) interquantile range) lagged behind shifts in both SBT and SST (mean 8.1 km yr(-1)), resulting in many species experiencing increasing temperatures. The velocity of climate change (VoCC) of mean SST accurately predicted both the direction and magnitude of distribution centroid shifts, while maximum SST did the same for contraction of the trailing edge. The VoCC of SBT was not a good predictor of range shifts. No good predictor of expansions of the leading edge was found. Our results show that invertebrates need to shift at different rates and directions to track the climate velocities of different temperature measures, and are therefore lagging behind most temperature measures. If these species cannot withstand a change in thermal habitat, this could ultimately lead to a drop in benthic biodiversity.


Asunto(s)
Cambio Climático , Ecosistema , Invertebrados/fisiología , Temperatura , Distribución Animal/fisiología , Animales , Biodiversidad , Mar del Norte
5.
J Acoust Soc Am ; 134(3): 2596-609, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23968057

RESUMEN

Acoustic dataloggers are used for monitoring the occurrence of cetaceans and can aid in fulfilling statutory monitoring requirements of protected species. Although useful for long-term monitoring, their spatial coverage is restricted, and for many devices the effective detection distance is not specified. A generalized additive mixed model (GAMM) was used to investigate the effects of (1) distance from datalogger, (2) animal behavior (feeding and traveling), and (3) group size on the detection probability of bottlenose dolphins (Tursiops truncatus) with autonomous dataloggers (C-PODs) validated with visual observations. The average probability of acoustic detection for minutes with a sighting was 0.59 and the maximum detection distance ranged from 1343-1779 m. Minutes with feeding activity had higher acoustic detection rates and longer average effective detection radius (EDR) than traveling ones. The detection probability for single dolphins was significantly higher than for groups, indicating that their acoustic behavior may differ from those of larger groups in the area, making them more detectable. The C-POD is effective at detecting dolphin presence but the effects of behavior and group size on detectability create challenges for estimating density from detections as higher detection rate of feeding dolphins could yield erroneously high density estimates in feeding areas.


Asunto(s)
Acústica/instrumentación , Delfín Mular/fisiología , Monitoreo del Ambiente/instrumentación , Biología Marina/instrumentación , Transductores , Vocalización Animal , Animales , Delfín Mular/psicología , Especies en Peligro de Extinción , Monitoreo del Ambiente/métodos , Diseño de Equipo , Conducta Alimentaria , Humanos , Biología Marina/métodos , Modelos Estadísticos , Movimiento (Física) , Océanos y Mares , Densidad de Población , Probabilidad , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador , Sonido , Espectrografía del Sonido , Natación , Factores de Tiempo , Percepción Visual , Gales
6.
Mar Pollut Bull ; 194(Pt A): 115434, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37634347

RESUMEN

Complex networks of above-ground roots and trunks make mangrove forests trap plastic litter. We tested how macroplastics relate to tree biomass, root abundance, mangrove geomorphology and river mouth proximity, surveying landward and seaward margins of seven forests in the Philippines, a global hotspot for marine plastic pollution. Macroplastics were abundant (mean ± s.e.: 1.1 ± 0.22 items m-2; range: 0.05 ± 0.05 to 3.79 ± 1.91), greatest at the landward zone (mean ± s.e.: 1.60 ± 0.41 m-2) and dominated by land-derived items (sachets, bags). Plastic abundance and weight increased with proximity to river mouths, with root abundance predicting plastic litter surface area (i.e., the cumulative sum of all the surface areas of each plastic element per plot). The study confirms rivers are a major pathway for marine plastic pollution, with mangrove roots are the biological attribute that regulate litter retention. The results suggest land-based waste management that prevent plastics entering rivers will reduce marine plastic pollution in Southeast Asia.


Asunto(s)
Contaminación Ambiental , Humedales , Biomasa , Bosques , Plásticos
7.
Sci Total Environ ; 838(Pt 3): 156408, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35660612

RESUMEN

The Philippines is identified as one of the major marine plastic litter polluters in the world with a discharge of approximately 0.75 million tons of marine plastic debris per year. However, the extent of the plastic problem is yet to be defined systematically because of limited research. Thus, this study aims to quantify plastic litter occurrence in mangrove areas as they function as sinks for plastic litter due to their inherent nature of trapping plastics. To define the extent of marine plastic pollution on an island scale, mangrove areas in 14 municipalities around Cebu Island were sampled, with 3 to 9 transects in each site depending on the length of coastline covered by mangroves. Sampling and characterization of both plastics and the mangrove ecosystem was performed in three locations along the transect - landward, middle, and seaward. A total of 4501 plastic items were sampled throughout the study sites with an average of 1.29 ± 0.67 items/m2 (18.07 ± 8.79 g/m2). The average distribution of plastic loads were 2.68 ± 1.9 items/m2 (38.52 ± 25.35 g/m2), 0.27 ± 0.10 items/m2 (6.65 ± 4.67 g/m2), and 0.94 ± 0.61 items/m2 (9.04 ± 4.28 g/m2) for the landward, middle, and seaward locations, respectively. The most frequent plastic types found were i) packaging, ii) plastic bags and iii) plastic fragments. The plastic loads and types suggest that most plastic wastes trapped in mangroves come from the nearby communities. Fishing-related plastics originated from the sea and were transported across the mangrove breadth. The findings confirm that mangroves are major traps of plastic litter that might adversely affect the marine ecosystem. The study underscores the urgent need for waste mitigation measures, including education, community engagement, infrastructure, technological solutions and supporting policies.


Asunto(s)
Ecosistema , Residuos , Animales , Cebus , Monitoreo del Ambiente , Filipinas , Plásticos/química , Políticas , Residuos/análisis
8.
Sci Total Environ ; 841: 156704, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35718174

RESUMEN

Southeast Asia is considered to have some of the highest levels of marine plastic pollution in the world. It is therefore vitally important to increase our understanding of the impacts and risks of plastic pollution to marine ecosystems and the essential services they provide to support the development of mitigation measures in the region. An interdisciplinary, international network of experts (Australia, Indonesia, Ireland, Malaysia, the Philippines, Singapore, Thailand, the United Kingdom, and Vietnam) set a research agenda for marine plastic pollution in the region, synthesizing current knowledge and highlighting areas for further research in Southeast Asia. Using an inductive method, 21 research questions emerged under five non-predefined key themes, grouping them according to which: (1) characterise marine plastic pollution in Southeast Asia; (2) explore its movement and fate across the region; (3) describe the biological and chemical modifications marine plastic pollution undergoes; (4) detail its environmental, social, and economic impacts; and, finally, (5) target regional policies and possible solutions. Questions relating to these research priority areas highlight the importance of better understanding the fate of marine plastic pollution, its degradation, and the impacts and risks it can generate across communities and different ecosystem services. Knowledge of these aspects will help support actions which currently suffer from transboundary problems, lack of responsibility, and inaction to tackle the issue from its point source in the region. Being profoundly affected by marine plastic pollution, Southeast Asian countries provide an opportunity to test the effectiveness of innovative and socially inclusive changes in marine plastic governance, as well as both high and low-tech solutions, which can offer insights and actionable models to the rest of the world.


Asunto(s)
Ecosistema , Plásticos , Asia Sudoriental , Monitoreo del Ambiente , Contaminación Ambiental , Filipinas , Residuos/análisis
10.
Ecol Evol ; 7(16): 6622-6633, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28861263

RESUMEN

Conservation grazing for breeding birds needs to balance the positive effects on vegetation structure and negative effects of nest trampling. In the UK, populations of Common redshank Tringa totanus breeding on saltmarshes declined by >50% between 1985 and 2011. These declines have been linked to changes in grazing management. The highest breeding densities of redshank on saltmarshes are found in lightly grazed areas. Conservation initiatives have encouraged low-intensity grazing at <1 cattle/ha, but even these levels of grazing can result in high levels of nest trampling. If livestock distribution is not spatially or temporally homogenous but concentrated where and when redshank breed, rates of nest trampling may be much higher than expected based on livestock density alone. By GPS tracking cattle on saltmarshes and monitoring trampling of dummy nests, this study quantified (i) the spatial and temporal distribution of cattle in relation to the distribution of redshank nesting habitats and (ii) trampling rates of dummy nests. The distribution of livestock was highly variable depending on both time in the season and the saltmarsh under study, with cattle using between 3% and 42% of the saltmarsh extent and spending most their time on higher elevation habitat within 500 m of the sea wall, but moving further onto the saltmarsh as the season progressed. Breeding redshank also nest on these higher elevation zones, and this breeding coincides with the early period of grazing. Probability of nest trampling was correlated to livestock density and was up to six times higher in the areas where redshank breed. This overlap in both space and time of the habitat use of cattle and redshank means that the trampling probability of a nest can be much higher than would be expected based on standard measures of cattle density. Synthesis and applications: Because saltmarsh grazing is required to maintain a favorable vegetation structure for redshank breeding, grazing management should aim to keep livestock away from redshank nesting habitat between mid-April and mid-July when nests are active, through delaying the onset of grazing or introducing a rotational grazing system.

11.
Biogeochemistry ; 135(1): 121-133, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32009694

RESUMEN

Benthic communities play a major role in organic matter remineralisation and the mediation of many aspects of shelf sea biogeochemistry. Few studies have considered how changes in community structure associated with different levels of physical disturbance affect sediment macronutrients and carbon following the cessation of disturbance. Here, we investigate how faunal activity (sediment particle reworking and bioirrigation) in communities that have survived contrasting levels of bottom fishing affect sediment organic carbon content and macronutrient concentrations ([NH4-N], [NO2-N], [NO3-N], [PO4-P], [SiO4-Si]). We find that organic carbon content and [NO3-N] decline in cohesive sediment communities that have experienced an increased frequency of fishing, whilst [NH4-N], [NO2-N], [PO4-P] and [SiO4-Si] are not affected. [NH4-N] increases in non-cohesive sediments that have experienced a higher frequency of fishing. Further analyses reveal that the way communities are restructured by physical disturbance differs between sediment type and with fishing frequency, but that changes in community structure do little to affect bioturbation and associated levels of organic carbon and nutrient concentrations. Our results suggest that in the presence of physical disturbance, irrespective of sediment type, the mediation of macronutrient and carbon cycling increasingly reflects the decoupling of organism-sediment relations. Indeed, it is the traits of the species that reside at the sediment-water interface, or that occupy deeper parts of the sediment profile, that are disproportionately expressed post-disturbance, that are most important for sustaining biogeochemical functioning.

12.
Biogeochemistry ; 135(1): 135-153, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32009695

RESUMEN

Microbes and benthic macro-invertebrates interact in sediments to play a major role in the biogeochemical cycling of organic matter, but the extent to which their contributions are modified following natural and anthropogenic changes has received little attention. Here, we investigate how nitrogen transformations, ascertained from changes in archaeal and bacterial N-cycling microbes and water macronutrient concentrations ([NH4-N], [NO2-N], [NO3-N]), in sand and sandy mud sediments differ when macrofaunal communities that have previously experienced contrasting levels of chronic fishing disturbance are exposed to organic matter enrichment. We find that differences in macrofaunal community structure related to differences in fishing activity affect the capacity of the macrofauna to mediate microbial nitrogen cycling in sand, but not in sandy mud environments. Whilst we found no evidence for a change in ammonia oxidiser community structure, we did find an increase in archaeal and bacterial denitrifier (AnirKa, nirS) and anammox (hzo) transcripts in macrofaunal communities characterized by higher ratios of suspension to deposit feeders, and a lower density but higher biomass of sediment-reworking fauna. Our findings suggest that nitrogen transformation in shelf sandy sediments is dependent on the stimulation of specific nitrogen cycling pathways that are associated with differences in the composition and context-dependent expression of the functional traits that belong to the resident bioturbating macrofauna community.

14.
ISME J ; 9(5): 1208-21, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25423027

RESUMEN

Assessing how natural environmental drivers affect biodiversity underpins our understanding of the relationships between complex biotic and ecological factors in natural ecosystems. Of all ecosystems, anthropogenically important estuaries represent a 'melting pot' of environmental stressors, typified by extreme salinity variations and associated biological complexity. Although existing models attempt to predict macroorganismal diversity over estuarine salinity gradients, attempts to model microbial biodiversity are limited for eukaryotes. Although diatoms commonly feature as bioindicator species, additional microbial eukaryotes represent a huge resource for assessing ecosystem health. Of these, meiofaunal communities may represent the optimal compromise between functional diversity that can be assessed using morphology and phenotype-environment interactions as compared with smaller life fractions. Here, using 454 Roche sequencing of the 18S nSSU barcode we investigate which of the local natural drivers are most strongly associated with microbial metazoan and sampled protist diversity across the full salinity gradient of the estuarine ecosystem. In order to investigate potential variation at the ecosystem scale, we compare two geographically proximate estuaries (Thames and Mersey, UK) with contrasting histories of anthropogenic stress. The data show that although community turnover is likely to be predictable, taxa are likely to respond to different environmental drivers and, in particular, hydrodynamics, salinity range and granulometry, according to varied life-history characteristics. At the ecosystem level, communities exhibited patterns of estuary-specific similarity within different salinity range habitats, highlighting the environmental sequencing biomonitoring potential of meiofauna, dispersal effects or both.


Asunto(s)
Biodiversidad , Ecosistema , Estuarios , Eucariontes , Animales , Biología Computacional , Código de Barras del ADN Taxonómico , Monitoreo del Ambiente , Geografía , Fenotipo , ARN Ribosómico 18S/genética , Salinidad , Reino Unido , Microbiología del Agua
15.
PLoS One ; 6(12): e28362, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22163297

RESUMEN

Key ecosystem processes such as carbon and nutrient cycling could be deteriorating as a result of biodiversity loss. However, currently we lack the ability to predict the consequences of realistic species loss on ecosystem processes. The aim of this study was to test whether species contributions to community biomass can be used as surrogate measures of their contribution to ecosystem processes. These were gross community productivity in a salt marsh plant assemblage and an intertidal macroalgae assemblage; community clearance of microalgae in sessile suspension feeding invertebrate assemblage; and nutrient uptake in an intertidal macroalgae assemblage. We conducted a series of biodiversity manipulations that represented realistic species extinction sequences in each of the three contrasting assemblages. Species were removed in a subtractive fashion so that biomass was allowed to vary with each species removal, and key ecosystem processes were measured at each stage of community disassembly. The functional contribution of species was directly proportional to their contribution to community biomass in a 1:1 ratio, a relationship that was consistent across three contrasting marine ecosystems and three ecosystem processes. This suggests that the biomass contributed by a species to an assemblage can be used to approximately predict the proportional decline in an ecosystem process when that species is lost. Such predictions represent "worst case scenarios" because, over time, extinction resilient species can offset the loss of biomass associated with the extinction of competitors. We also modelled a "best case scenario" that accounts for compensatory responses by the extant species with the highest per capita contribution to ecosystem processes. These worst and best case scenarios could be used to predict the minimum and maximum species required to sustain threshold values of ecosystem processes in the future.


Asunto(s)
Biodiversidad , Biomasa , Monitoreo del Ambiente/métodos , Algoritmos , Animales , Conservación de los Recursos Naturales , Ecosistema , Extinción Biológica , Cadena Alimentaria , Invertebrados/fisiología , Biología Marina , Plantas/metabolismo , Densidad de Población , Dinámica Poblacional , Agua de Mar , Algas Marinas/fisiología , Reino Unido
16.
Conserv Biol ; 20(3): 811-20, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16909574

RESUMEN

Marine protected areas, and other fishery management systems that impart partial or total protection from fishing, are increasingly advocated as an essential management tool to ensure the sustainable use of marine resources. Beneficial effects for fish species are well documented for tropical and reef systems, but the effects of marine protected areas remain largely untested in temperate waters. We compared trends in sport-fishing catches of nine fish species in an area influenced by a large (500-km2) towed-fishing-gear restriction zone and in adjacent areas under conventional fishery management controls. Over the period 1973-2002 the mean reported weight of above-average-sized (trophy) fish of species with early age at maturity and limited home range was greatest within the area influenced by the fishing-gear restriction zone. The reported weight of trophy fish of species that mature early also declined less and more slowly over time within the area influenced by the fishing-gear restriction zone. Importantly, the mean reported weight of trophy fish of species that mature late and those that undertake extensive spatial movements declined at the same rate in all areas. Hence these species are likely to require protected areas > 500 km2 for effective protection. Our results also indicated that fish species with a localized distribution or high site fidelity may require additional protection from sport fishing to prevent declines in the number or size of fish within the local population.


Asunto(s)
Conservación de los Recursos Naturales , Peces/fisiología , Animales , Inglaterra , Explotaciones Pesqueras , Océanos y Mares , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA