Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 36(4): 1159-1181, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38134410

RESUMEN

Plants have unique responses to fluctuating light conditions. One such response involves chloroplast photorelocation movement, which optimizes photosynthesis under weak light by the accumulation of chloroplasts along the periclinal side of the cell, which prevents photodamage under strong light by avoiding chloroplast positioning toward the anticlinal side of the cell. This light-responsive chloroplast movement relies on the reorganization of chloroplast actin (cp-actin) filaments. Previous studies have suggested that CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1) is essential for chloroplast photorelocation movement as a regulator of cp-actin filaments. In this study, we conducted comprehensive analyses to understand CHUP1 function. Functional, fluorescently tagged CHUP1 colocalized with and was coordinately reorganized with cp-actin filaments on the chloroplast outer envelope during chloroplast movement in Arabidopsis thaliana. CHUP1 distribution was reversibly regulated in a blue light- and phototropin-dependent manner. X-ray crystallography revealed that the CHUP1-C-terminal domain shares structural homology with the formin homology 2 (FH2) domain, despite lacking sequence similarity. Furthermore, the CHUP1-C-terminal domain promoted actin polymerization in the presence of profilin in vitro. Taken together, our findings indicate that CHUP1 is a plant-specific actin polymerization factor that has convergently evolved to assemble cp-actin filaments and enables chloroplast photorelocation movement.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Actinas , Proteínas de Arabidopsis/genética , Polimerizacion , Proteínas de Cloroplastos/genética , Arabidopsis/genética , Citoesqueleto de Actina , Cloroplastos/fisiología , Luz , Movimiento
2.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36314989

RESUMEN

Rho of plant (ROP) proteins and the interactor of constitutively active ROP (ICR) family member ICR5/MIDD1 have been implicated to function as signaling modules that regulate metaxylem secondary cell wall patterning. Yet, loss-of-function mutants of ICR5 and its closest homologs have not been studied and, hence, the functions of these ICR family members are not fully established. Here, we studied the functions of ICR2 and its homolog ICR5. We show that ICR2 is a microtubule-associated protein that affects microtubule dynamics. Secondary cell wall pits in the metaxylem of Arabidopsis icr2 and icr5 single mutants and icr2 icr5 double mutants are smaller than those in wild-type Col-0 seedlings; however, they are remarkably denser, implying a complex function of ICRs in secondary cell wall patterning. ICR5 has a unique function in protoxylem secondary cell wall patterning, whereas icr2, but not icr5, mutants develop split root hairs, demonstrating functional diversification. Taken together, our results show that ICR2 and ICR5 have unique and cooperative functions as microtubule-associated proteins and as ROP effectors.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo
3.
Plant Cell ; 34(11): 4569-4582, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35929083

RESUMEN

The complexes translocon at the outer envelope membrane of chloroplasts and translocon at the inner envelope membrane of chloroplasts (TIC) mediate preprotein translocation across the chloroplast outer and inner envelope membranes, respectively. Tic20, Tic56, Tic100, and Tic214 form a stable one-megadalton TIC whose function is essential for Arabidopsis thaliana and Chlamydomonas reinhardtii. Tic20 plays a central role in preprotein translocation by forming a protein-conducting channel. Tic56, Tic100, and Tic214 are also indispensable for TIC function, but whether other components are required for this process remain unclear. Here, we demonstrate that a 12-kDa protein named Tic12 is part of the TIC in A. thaliana and participates in preprotein translocation across the inner envelope membrane. Tic12 was tightly associated with the TIC but disassociated under high-salt conditions in combination with Triton X-100. Site-specific UV crosslinking experiments revealed that Tic12 and Tic20 directly interact with the transit peptide of a translocating preprotein. The tic12 null mutants are albino and seedling lethal, similar to the other tic null mutants. Tic12 and Tic20 were also involved in preprotein translocation in (Pisum sativum) pea chloroplasts. Thus, Tic12 is an essential constituent that forms the functional core together with Tic20 in the one-megadalton TIC.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tics , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tics/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte de Proteínas , Cloroplastos/metabolismo , Pisum sativum/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(34): e2208277119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969755

RESUMEN

Chloroplast protein import is mediated by translocons named TOC and TIC on the outer and inner envelope membranes, respectively. Translocon constituents are conserved among green lineages, including plants and green algae. However, it remains unclear whether Rhodophyta (red algae) share common chloroplast protein import mechanisms with the green lineages. We show that in the rhodophyte Cyanidioschyzon merolae, plastome-encoded Tic20pt localized to the chloroplast envelope and was transiently associated with preproteins during import, suggesting its conserved function as a TIC constituent. Besides plastome-encoded FtsHpt and several chaperones, a class of GTP (guanosine 5'-triphosphate)-binding proteins distinct from the Toc34/159 GTPase family associated transiently with preproteins. This class of proteins resides mainly in the cytosol and shows sequence similarities with Sey1/RHD3, required for endoplasmic reticulum membrane fusion, and with the periplastid-localized import factor PPP1, previously identified in the Apicomplexa and diatoms. These GTP-binding proteins, named plastid targeting factor for protein import 1 (PTF1) to PTF3, may act as plastid targeting factors in Rhodophyta.


Asunto(s)
Proteínas de Cloroplastos , Proteínas de Unión al GTP , Rhodophyta , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Proteínas de Unión al GTP/metabolismo , Transporte de Proteínas , Rhodophyta/metabolismo
5.
J Plant Res ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598067

RESUMEN

Chloroplast-actin (cp-actin) filaments are crucial for light-induced chloroplast movement, and appear in the front region of moving chloroplasts when visualized using GFP-mouse Talin. They are short and thick, exist between a chloroplast and the plasma membrane, and move actively and rapidly compared to cytoplasmic long actin filaments that run through a cell. The average period during which a cp-actin filament was observed at the same position was less than 0.5 s. The average lengths of the cp-actin filaments calculated from those at the front region of the moving chloroplast and those around the chloroplast periphery after stopping the movement were almost the same, approximately 0.8 µm. Each cp-actin filament is shown as a dotted line consisting of 4-5 dots. The vector sum of cp-actin filaments in a moving chloroplast is parallel to the moving direction of the chloroplast, suggesting that the direction of chloroplast movement is regulated by the vector sum of cp-actin filaments. However, once the chloroplasts stopped moving, the vector sum of the cp-actin filaments around the chloroplast periphery was close to zero, indicating that the direction of movement was undecided. To determine the precise structure of cp-actin filaments under electron microscopy, Arabidopsis leaves and fern Adiantum capillus-veneris gametophytes were frozen using a high-pressure freezer, and observed under electron microscopy. However, no bundled microfilaments were found, suggesting that the cp-actin filaments were unstable even under high-pressure freezing.

6.
Plant Physiol ; 183(1): 304-316, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32193212

RESUMEN

Blue-light-induced chloroplast movements play an important role in maximizing light utilization for photosynthesis in plants. Under a weak light condition, chloroplasts accumulate to the cell surface to capture light efficiently (chloroplast accumulation response). Conversely, chloroplasts escape from strong light and move to the side wall to reduce photodamage (chloroplast avoidance response). The blue light receptor phototropin (phot) regulates these chloroplast movements and optimizes leaf photosynthesis by controlling other responses in addition to chloroplast movements. Seed plants such as Arabidopsis (Arabidopsis thaliana) have phot1 and phot2. They redundantly mediate phototropism, stomatal opening, leaf flattening, and the chloroplast accumulation response. However, the chloroplast avoidance response is induced by strong blue light and regulated primarily by phot2. Phots are localized mainly on the plasma membrane. However, a substantial amount of phot2 resides on the chloroplast outer envelope. Therefore, differentially localized phot2 might have different functions. To determine the functions of plasma membrane- and chloroplast envelope-localized phot2, we tethered it to these structures with their respective targeting signals. Plasma membrane-localized phot2 regulated phototropism, leaf flattening, stomatal opening, and chloroplast movements. Chloroplast envelope-localized phot2 failed to mediate phototropism, leaf flattening, and the chloroplast accumulation response but partially regulated the chloroplast avoidance response and stomatal opening. Based on the present and previous findings, we propose that phot2 localized at the interface between the plasma membrane and the chloroplasts is required for the chloroplast avoidance response and possibly for stomatal opening as well.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Fotosíntesis/genética , Fotosíntesis/fisiología , Fototropinas/metabolismo , Fototropismo/genética , Fototropismo/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología
8.
J Plant Res ; 133(4): 525-535, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32303870

RESUMEN

Light-induced chloroplast movements control efficient light utilization in leaves, and thus, are essential for leaf photosynthesis and biomass production under fluctuating light conditions. Chloroplast movements have been intensively analyzed using wild-type and mutant plants of Arabidopsis thaliana. The molecular mechanism and the contribution to biomass production were elucidated. However, the knowledge of chloroplast movements is very scarce in other plant species, especially grass species including crop plants. Because chloroplast movements are efficient strategy to optimize light capture in leaves and thus promote leaf photosynthesis and biomass, analysis of chloroplast movements in crops is required for biomass production. Here, we analyzed chloroplast movements in a wide range of cultivated and wild species of genus Oryza. All examined Oryza species showed the blue-light-induced chloroplast movements. However, O. sativa and its ancestral species O. rufipogon, both of which are AA-genome species and usually grown in open condition where plants are exposed to full sunlight, showed the much weaker chloroplast movements than Oryza species that are usually grown under shade or semi-shade conditions, including O. officinalis, O. eichingeri, and O. granulata. Further detailed analyses of different O. officinalis accessions, including sun, semi-shade, and shade accessions, indicated that the difference in chloroplast movement strength between domesticated rice plants and wild species might result from the difference in habitat, and the shape of mesophyll chlorenchyma cells. The findings of this study provide useful information for optimizing Oryza growth conditions, and lay the groundwork for improving growth and yield in staple food crop Oryza sativa.


Asunto(s)
Arabidopsis , Cloroplastos , Oryza , Cloroplastos/metabolismo , Luz , Fotosíntesis , Hojas de la Planta
9.
Plant Physiol ; 178(3): 1358-1369, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30266749

RESUMEN

Under high light intensity, chloroplasts avoid absorbing excess light by moving to anticlinal cell walls (avoidance response), but under low light intensity, chloroplasts accumulate along periclinal cell walls (accumulation response). In most plant species, these responses are induced by blue light and are mediated by the blue light photoreceptor, phototropin, which also regulates phototropism, leaf flattening, and stomatal opening. These phototropin-mediated responses could enhance photosynthesis and biomass production. Here, using various Arabidopsis (Arabidopsis thaliana) mutants deficient in chloroplast movement, we demonstrated that the accumulation response enhances leaf photosynthesis and plant biomass production. Conspicuously, phototropin2 mutant plants specifically defective in the avoidance response but not in other phototropin-mediated responses displayed a constitutive accumulation response irrespective of light intensities, enhanced leaf photosynthesis, and increased plant biomass production. Therefore, our findings provide clear experimental evidence of the importance of the chloroplast accumulation response in leaf photosynthesis and biomass production.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Fotosíntesis/fisiología , Fototropinas/metabolismo , Fototropismo/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Biomasa , Cloroplastos/metabolismo , Fototropinas/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Estomas de Plantas/genética , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/fisiología
10.
Proc Natl Acad Sci U S A ; 113(37): 10424-9, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27578868

RESUMEN

In green plants, the blue light receptor kinase phototropin mediates various photomovements and developmental responses, such as phototropism, chloroplast photorelocation movements (accumulation and avoidance), stomatal opening, and leaf flattening, which facilitate photosynthesis. In Arabidopsis, two phototropins (phot1 and phot2) redundantly mediate these responses. Two phototropin-interacting proteins, NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2), which belong to the NPH3/RPT2-like (NRL) family of BTB (broad complex, tramtrack, and bric à brac) domain proteins, mediate phototropism and leaf flattening. However, the roles of NRL proteins in chloroplast photorelocation movement remain to be determined. Here, we show that another phototropin-interacting NRL protein, NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1), and RPT2 redundantly mediate the chloroplast accumulation response but not the avoidance response. NPH3, RPT2, and NCH1 are not involved in the chloroplast avoidance response or stomatal opening. In the liverwort Marchantia polymorpha, the NCH1 ortholog, MpNCH1, is essential for the chloroplast accumulation response but not the avoidance response, indicating that the regulation of the phototropin-mediated chloroplast accumulation response by RPT2/NCH1 is conserved in land plants. Thus, the NRL protein combination could determine the specificity of diverse phototropin-mediated responses.


Asunto(s)
Proteínas de Arabidopsis/genética , Fototropismo/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , Embryophyta/crecimiento & desarrollo , Embryophyta/metabolismo , Luz , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fotosíntesis/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas
12.
Pediatr Blood Cancer ; 65(6): e26982, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29384263

RESUMEN

PURPOSE: Pericardial effusion (PE) is a potentially life-threatening complication following hematopoietic stem cell transplantation (HCT). A higher incidence of early-onset PE, unrelated to graft-versus-host disease, before day 100 after HCT has been reported in pediatric patients, but the pathogenic mechanism is poorly understood. Aiming to determine the pathogenesis of early-onset PE in pediatric patients, we analyzed the cytokine concentration and cell population in the pericardial fluid of four pediatric patients with PE. METHODS: Between January 2009 and December 2015, four patients requiring pericardiocentesis for clinically significant PE were identified in 60 patients. We evaluated the interleukin-6 (IL-6), interferon-γ, IL-1ß, and tumor necrosis factor-α levels in PE. Two patients were available for analysis with intracellular cytokine flow cytometry and a chimerism assay. RESULTS: All patients showed the accumulation of pericardial macrophages and high concentrations of IL-6 in PE. Notably, the accumulated pericardial macrophages were CD163+ CD15+ CD14+ cells of host origin that produced IL-6. CONCLUSION: These IL-6-producing tissue-resident macrophages may be key players in the pathogenesis of early-onset PE.


Asunto(s)
Enfermedades Hematológicas/terapia , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Interleucina-6/metabolismo , Macrófagos/metabolismo , Derrame Pericárdico/patología , Edad de Inicio , Preescolar , Femenino , Humanos , Lactante , Macrófagos/patología , Masculino , Derrame Pericárdico/etiología , Derrame Pericárdico/metabolismo , Pronóstico , Factores de Riesgo
13.
Plant Cell Environ ; 40(11): 2447-2456, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27859339

RESUMEN

Light-induced chloroplast movement is found in most plant species, including algae and land plants. In land plants with multiple small chloroplasts, under weak light conditions, the chloroplasts move towards the light and accumulate on the periclinal cell walls to efficiently perceive light for photosynthesis (the accumulation response). Under strong light conditions, chloroplasts escape from light to avoid photodamage (the avoidance response). In most plant species, blue light induces chloroplast movement, and phototropin receptor kinases are the blue light receptors. Molecular mechanisms for photoreceptors, signal transduction and chloroplast motility systems are being studied using the model plant Arabidopsis thaliana. However, to further understand the molecular mechanisms and evolutionary history of chloroplast movement in green plants, analyses using other plant systems are required. Here, we review recent works on chloroplast movement in green algae, liverwort, mosses and ferns that provide new insights on chloroplast movement.


Asunto(s)
Briófitas/fisiología , Cloroplastos/fisiología , Helechos/fisiología , Hepatophyta/fisiología , Luz , Modelos Biológicos , Movimiento , Briófitas/efectos de la radiación , Cloroplastos/efectos de la radiación , Helechos/efectos de la radiación , Hepatophyta/efectos de la radiación
15.
J Plant Res ; 130(4): 779-789, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28421371

RESUMEN

Chloroplast photorelocation movement, well-characterized light-induced response found in various plant species from alga to higher plants, is an important phenomenon for plants to increase photosynthesis efficiency and avoid photodamage. The signal for chloroplast accumulation movement connecting the blue light receptor, phototropin, and chloroplasts remains to be identified, although the photoreceptors and the mechanism of movement via chloroplast actin filaments have now been revealed in land plants. The characteristics of the signal have been found; the speed of signal transfer is about 1 µm min-1 and that the signal for the accumulation response has a longer life and is transferred a longer distance than that of the avoidance response. Here, to collect the clues of the unknown signal substances, we studied the effect of temperature on the speed of signal transmission using the fern Adiantum capillus-veneris and found the possibility that the mechanism of signal transfer was not dependent on the simple diffusion of a substance; thus, some chemical reaction must also be involved. We also found new insights of signaling substances, such that microtubules are not involved in the signal transmission, and that the signal could even be transmitted through the narrow space between chloroplasts and the plasma membrane.


Asunto(s)
Adiantum/fisiología , Fototropinas/metabolismo , Transducción de Señal , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Adiantum/efectos de la radiación , Adiantum/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Cloroplastos/ultraestructura , Células Germinativas de las Plantas , Luz , Fotosíntesis , Fototropinas/genética , Temperatura
16.
Proc Natl Acad Sci U S A ; 111(11): 4327-31, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24591587

RESUMEN

Nuclear movement and positioning are indispensable for most cellular functions. In plants, strong light-induced chloroplast movement to the side walls of the cell is essential for minimizing damage from strong visible light. Strong light-induced nuclear movement to the side walls also has been suggested to play an important role in minimizing damage from strong UV light. Although both movements are regulated by the same photoreceptor, phototropin, the precise cytoskeleton-based force generation mechanism for nuclear movement is unknown, in contrast to the short actin-based mechanism of chloroplast movement. Here we show that actin-dependent movement of plastids attached to the nucleus is essential for light-induced nuclear movement in the Arabidopsis leaf epidermal cell. We found that nuclei are always associated with some plastids, and that light-induced nuclear movement is correlated with the dynamics of short actin filaments associated with plastids. Indeed, nuclei without plastid attachments do not exhibit blue light-induced directional movement. Our results demonstrate that nuclei are incapable of autonomously moving in response to light, whereas attached plastids carry nuclei via the short actin filament-based movement. Thus, the close association between nuclei and plastids is essential for their cooperative movements and functions.


Asunto(s)
Actinas/metabolismo , Arabidopsis/fisiología , Núcleo Celular/fisiología , Movimiento/fisiología , Hojas de la Planta/fisiología , Plastidios/fisiología , Fenómenos Biomecánicos , Núcleo Celular/metabolismo , Luz/efectos adversos , Microscopía Confocal , Microscopía Fluorescente , Movimiento/efectos de la radiación , Plastidios/metabolismo , Imagen de Lapso de Tiempo
17.
Plant Physiol ; 169(2): 1155-67, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26324877

RESUMEN

Organelle movement and positioning play important roles in fundamental cellular activities and adaptive responses to environmental stress in plants. To optimize photosynthetic light utilization, chloroplasts move toward weak blue light (the accumulation response) and escape from strong blue light (the avoidance response). Nuclei also move in response to strong blue light by utilizing the light-induced movement of attached plastids in leaf cells. Blue light receptor phototropins and several factors for chloroplast photorelocation movement have been identified through molecular genetic analysis of Arabidopsis (Arabidopsis thaliana). PLASTID MOVEMENT IMPAIRED1 (PMI1) is a plant-specific C2-domain protein that is required for efficient chloroplast photorelocation movement. There are two PLASTID MOVEMENT IMPAIRED1-RELATED (PMIR) genes, PMIR1 and PMIR2, in the Arabidopsis genome. However, the mechanism in which PMI1 regulates chloroplast and nuclear photorelocation movements and the involvement of PMIR1 and PMIR2 in these organelle movements remained unknown. Here, we analyzed chloroplast and nuclear photorelocation movements in mutant lines of PMI1, PMIR1, and PMIR2. In mesophyll cells, the pmi1 single mutant showed severe defects in both chloroplast and nuclear photorelocation movements resulting from the impaired regulation of chloroplast-actin filaments. In pavement cells, pmi1 mutant plants were partially defective in both plastid and nuclear photorelocation movements, but pmi1pmir1 and pmi1pmir1pmir2 mutant lines lacked the blue light-induced movement responses of plastids and nuclei completely. These results indicated that PMI1 is essential for chloroplast and nuclear photorelocation movements in mesophyll cells and that both PMI1 and PMIR1 are indispensable for photorelocation movements of plastids and thus, nuclei in pavement cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Núcleo Celular/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Citoesqueleto de Actina/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Citoplasma/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Células del Mesófilo/fisiología , Mutación , Plantas Modificadas Genéticamente
18.
Plant Cell Environ ; 39(4): 871-82, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26586173

RESUMEN

Chloroplast movement in nine climbing plant species was investigated. It is thought that chloroplasts generally escape from strong light to avoid photodamage but accumulate towards weak light to perform photosynthesis effectively. Unexpectedly, however, the leaves of climbing plants grown under strong sunlight showed very low or no chloroplast photorelocation responses to either weak or strong blue light when detected by red light transmittance through leaves. Direct observations of Cayratia japonica leaves, for example, revealed that the average number of chloroplasts in upper periclinal walls of palisade tissue cells was only 1.2 after weak blue-light irradiation and almost all of the chloroplasts remained at the anticlinal wall, the state of chloroplast avoidance response. The leaves grown under strong light have thin and columnar palisade tissue cells comparing with the leaves grown under low light. Depending on our analyses and our schematic model, the thinner cells in a unit leaf area have a wider total plasma membrane area, such that more chloroplasts can exist on the plasma membrane in the thinner cells than in the thicker cells in a unit leaf-area basis. The same strategy might be used in other plant leaves grown under direct sunlight.


Asunto(s)
Cloroplastos/efectos de la radiación , Luz Solar , Vitaceae/crecimiento & desarrollo , Vitaceae/efectos de la radiación , Forma de la Célula/efectos de la radiación , Clorofila/metabolismo , Células del Mesófilo/citología , Células del Mesófilo/efectos de la radiación , Microscopía Fluorescente , Tamaño de los Órganos , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación
19.
J Plant Res ; 129(2): 175-87, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26858202

RESUMEN

The blue light (BL) receptor phototropin (phot) is specifically found in green plants; it regulates various BL-induced responses such as phototropism, chloroplast movement, stomatal opening, and leaf flattening. In Arabidopsis thaliana, two phototropins--phot1 and phot2--respond to blue light in overlapping but distinct ways. These BL-receptor-mediated responses enhance the photosynthetic activity of plants under weak light and minimize photodamage under strong light conditions. Welwitschia mirabilis Hook.f. found in the Namib Desert, and it has adapted to severe environmental stresses such as limiting water and strong sunlight. Although the plant has physiologically and ecologically unique features, it is unknown whether phototropin is functional in this plant. In this study, we assessed the functioning of phot-mediated BL responses in W. mirabilis. BL-dependent phototropism and stomatal opening was observed but light-dependent chloroplast movement was not detected. We performed a functional analysis of the PHOT1 gene of W. mirabilis, WmPHOT1, in Arabidopsis thaliana. We generated transgenic A. thaliana lines expressing WmPHOT1 in a phot1 phot2 double mutant background. Several Wmphot1 transgenic plants showed normal growth, although phot1 phot2 double mutant plants showed stunted growth. Furthermore, Wmphot1 transgenic plants showed normal phot1-mediated responses including phototropism, chloroplast accumulation, stomatal opening, and leaf flattening, but lacked the chloroplast avoidance response that is specifically mediated by phot2. Thus, our findings indicate that W. mirabilis possesses typical phot-mediated BL responses that were at least partially mediated by functional phototropin 1, an ortholog of Atphot1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Gnetophyta/fisiología , Fototransducción , Fosfoproteínas/metabolismo , Fototropinas/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Gnetophyta/genética , Gnetophyta/efectos de la radiación , Luz , Mutación , Fosfoproteínas/genética , Fotosíntesis/efectos de la radiación , Fototropinas/genética , Fototropismo/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación
20.
Pediatr Blood Cancer ; 62(3): 542-4, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25283271

RESUMEN

Germline mutations in CBL have been identified in patients with Noonan syndrome-like phenotypes, while juvenile myelomonocytic leukemia (JMML) harbors duplication of a germline CBL, resulting in acquired isodisomy. The association between moyamoya disease and Noonan syndrome carrying a PTPN11 mutation has recently been reported. We present a patient with JMML who developed moyamoya disease and neovascular glaucoma. Our patient exhibited a Noonan syndrome-like phenotype. Genetic analysis revealed acquired isodisomy and a germline heterozygous mutation in CBL. This is a rare case of CBL mutation associated with moyamoya disease. Prolonged RAS pathway signaling may cause disruption of cerebrovascular development.


Asunto(s)
Leucemia Mielomonocítica Juvenil/genética , Enfermedad de Moyamoya/genética , Mutación , Síndrome de Noonan/genética , Proteínas Proto-Oncogénicas c-cbl/genética , Niño , Femenino , Humanos , Leucemia Mielomonocítica Juvenil/metabolismo , Enfermedad de Moyamoya/complicaciones , Enfermedad de Moyamoya/metabolismo , Síndrome de Noonan/complicaciones , Síndrome de Noonan/metabolismo , Proteína Oncogénica p21(ras)/genética , Proteína Oncogénica p21(ras)/metabolismo , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA