Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(33): E4867-76, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27486247

RESUMEN

The cyanobacterium Synechococcus elongatus relies upon photosynthesis to drive metabolism and growth. During darkness, Synechococcus stops growing, derives energy from its glycogen stores, and greatly decreases rates of macromolecular synthesis via unknown mechanisms. Here, we show that the stringent response, a stress response pathway whose genes are conserved across bacteria and plant plastids, contributes to this dark adaptation. Levels of the stringent response alarmone guanosine 3'-diphosphate 5'-diphosphate (ppGpp) rise after a shift from light to dark, indicating that darkness triggers the same response in cyanobacteria as starvation in heterotrophic bacteria. High levels of ppGpp are sufficient to stop growth and dramatically alter many aspects of cellular physiology, including levels of photosynthetic pigments and polyphosphate, DNA content, and the rate of translation. Cells unable to synthesize ppGpp display pronounced growth defects after exposure to darkness. The stringent response regulates expression of a number of genes in Synechococcus, including ribosomal hibernation promoting factor (hpf), which causes ribosomes to dimerize in the dark and may contribute to decreased translation. Although the metabolism of Synechococcus differentiates it from other model bacterial systems, the logic of the stringent response remains remarkably conserved, while at the same time having adapted to the unique stresses of the photosynthetic lifestyle.


Asunto(s)
Adaptación Fisiológica , Synechococcus/fisiología , Aclimatación , Replicación del ADN , Oscuridad , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/análisis , Guanosina Tetrafosfato/fisiología , Fotosíntesis
2.
Biochemistry ; 57(1): 38-46, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28992412

RESUMEN

A fundamental goal of protein biochemistry is to determine the sequence-function relationship, but the vastness of sequence space makes comprehensive evaluation of this landscape difficult. However, advances in DNA synthesis and sequencing now allow researchers to assess the functional impact of every single mutation in many proteins, but challenges remain in library construction and the development of general assays applicable to a diverse range of protein functions. This Perspective briefly outlines the technical innovations in DNA manipulation that allow massively parallel protein biochemistry and then summarizes the methods currently available for library construction and the functional assays of protein variants. Areas in need of future innovation are highlighted with a particular focus on assay development and the use of computational analysis with machine learning to effectively traverse the sequence-function landscape. Finally, applications in the fundamentals of protein biochemistry, disease prediction, and protein engineering are presented.


Asunto(s)
Bioquímica/métodos , Modelos Moleculares , Biología Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Análisis de Secuencia de ADN , Animales , Bioquímica/tendencias , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Biología Computacional/tendencias , Humanos , Aprendizaje Automático/tendencias , Biología Molecular/tendencias , Mutagénesis , Mutación , Conformación Proteica , Ingeniería de Proteínas/tendencias , Proteínas/genética , Proyectos de Investigación/tendencias , Análisis de Secuencia de ADN/tendencias
3.
Nat Commun ; 12(1): 5664, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34580310

RESUMEN

Proteins evolve through the modular rearrangement of elements known as domains. Extant, multidomain proteins are hypothesized to be the result of domain accretion, but there has been limited experimental validation of this idea. Here, we introduce a technique for genetic minimization by iterative size-exclusion and recombination (MISER) for comprehensively making all possible deletions of a protein. Using MISER, we generate a deletion landscape for the CRISPR protein Cas9. We find that the catalytically-dead Streptococcus pyogenes Cas9 can tolerate large single deletions in the REC2, REC3, HNH, and RuvC domains, while still functioning in vitro and in vivo, and that these deletions can be stacked together to engineer minimal, DNA-binding effector proteins. In total, our results demonstrate that extant proteins retain significant modularity from the accretion process and, as genetic size is a major limitation for viral delivery systems, establish a general technique to improve genome editing and gene therapy-based therapeutics.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Dominios y Motivos de Interacción de Proteínas/genética , ARN Guía de Kinetoplastida/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/ultraestructura , Línea Celular Tumoral , Microscopía por Crioelectrón , ADN/metabolismo , Edición Génica/métodos , Humanos , Imagen Individual de Molécula
4.
Prostate ; 69(6): 571-84, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19143030

RESUMEN

BACKGROUND: Androgen ablation (AA) causes apoptosis of normal and neoplastic prostate cells. It is a standard treatment for advanced prostate cancer. Androgen ablation-mediated immunological effects include bone marrow hyperplasia, thymic regeneration, T and B cell lymphopoeisis and restoration of age-related peripheral T cell dysfunction. Androgens also regulate the transcription of several cytokines. Dendritic cells (DC) are the most potent antigen presenting cells that can activate antigen-specific naïve T cells. Despite myriad clinical trials involving DC-based prostate cancer immunotherapies, the effects of AA on DC function remain largely uncharacterized. Therefore, we investigated the effects of AA on DC and whether it could improve the efficacy of prostate cancer immunotherapy. METHODS: Cytokine expression changes due to AA were quantified by multiplex ELISA. Flow cytometry was used to assess AA-mediated effects on DC maturation and expression of costimulatory markers. Mixed leukocyte reactions and cell-mediated lysis assays elucidated the role of androgens in DC function. The effect of AA on the efficacy of vaccination against a prostate tumor-associated antigen was tested using Elispot assays. RESULTS: Androgen ablation increased dendritic cell maturation and costimulatory marker expression, but had no effect on DC costimulatory function. However, DC isolated from castrated mice increased the expression of key cytokines by antigen-experienced T cells while decreasing their expression in naïve cells. Finally, androgen ablation improved immune responses to vaccination only when applied after immunization. CONCLUSION: Androgen ablation causes differential effects of DC on primary and secondary T cell responses, thus augmenting vaccine immunogenicity only when applied after immunization.


Asunto(s)
Andrógenos/inmunología , Vacunas contra el Cáncer/uso terapéutico , Células Dendríticas/inmunología , Neoplasias de la Próstata/inmunología , Animales , Apoptosis , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Vacunas contra el Cáncer/inmunología , Inmunización/métodos , Selectina L/inmunología , Ganglios Linfáticos/inmunología , Activación de Linfocitos , Prueba de Cultivo Mixto de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Orquiectomía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Linfocitos T/inmunología
5.
ACS Synth Biol ; 6(10): 1825-1833, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28707884

RESUMEN

Comprehensive and programmable protein mutagenesis is critical for understanding structure-function relationships and improving protein function. There is thus a need for robust and unbiased molecular biological approaches for the construction of the requisite comprehensive protein libraries. Here we demonstrate that plasmid recombineering is a simple and robust in vivo method for the generation of protein mutants for both comprehensive library generation as well as programmable targeting of sequence space. Using the fluorescent protein iLOV as a model target, we build a complete mutagenesis library and find it to be specific and comprehensive, detecting 99.8% of our intended mutations. We then develop a thermostability screen and utilize our comprehensive mutation data to rapidly construct a targeted and multiplexed library that identifies significantly improved variants, thus demonstrating rapid protein engineering in a simple protocol.


Asunto(s)
Plásmidos/genética , Ingeniería de Proteínas/métodos , Evolución Molecular , Biblioteca de Genes , Mutagénesis Sitio-Dirigida/métodos
6.
J Transl Med ; 4: 42, 2006 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-17059610

RESUMEN

Incomplete Freund's adjuvant (IFA) serves as a carrier for water-in-oil emulsion (W/O) vaccines. The stability of such emulsions greatly affects vaccine safety and efficacy since continued presence of antigen depots at lymphoid organs releasing low-level antigens is known to stimulate a potent immune response and high-level systemic release of antigens can lead to tolerance. W/O emulsions for the purpose of clinical and laboratory peptide-based vaccinations have been prepared using the techniques of syringe extrusion, vortex or high-speed homogenization. There is no consensus in the field over which technique would be best to use and no immunological data are available that compare the three techniques. In this study, we compared the immune responses induced by a peptide-based vaccine prepared using vortex, syringe-extrusion and homogenization. The vaccination led to tumor rejection by mice vaccinated with the peptide-based vaccine prepared using all three techniques. The immunological data from the in vivo cytotoxicity assay showed a trend for lower responses and a higher variability and greater range in the immune responses induced by a vaccine that was emulsified by the vortex or homogenizer techniques as compared to the syringe-extrusion technique. There were statistically significant lower numbers of IFNgamma-secreting cells induced when the mice were vaccinated with a peptide-based vaccine emulsion prepared using the vortex compared to the syringe-extrusion technique. At a suboptimal vaccine dose, the mice vaccinated with a peptide-based vaccine emulsion prepared using the vortex technique had the largest tumors compared to the syringe-extrusion or the homogenizer technique. In the setting of a busy pharmacy that prepares peptide-based vaccine emulsions for clinical studies, the vortex technique can still be used but we urge investigators to take special care in their choice of mixing vessels for the vortex technique as that can influence the stability of the emulsion. However, in instances where the optimal dose is unknown, we caution investigators against using the vortex technique to prepare the peptide-based vaccine emulsions. Overall, we report that all three techniques can be used to prepare peptide-based vaccine emulsions under optimal dose conditions and we discuss important details regarding the proper preparation of the emulsions.

7.
Cell Metab ; 22(5): 895-906, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26456335

RESUMEN

Many genes that affect replicative lifespan (RLS) in the budding yeast Saccharomyces cerevisiae also affect aging in other organisms such as C. elegans and M. musculus. We performed a systematic analysis of yeast RLS in a set of 4,698 viable single-gene deletion strains. Multiple functional gene clusters were identified, and full genome-to-genome comparison demonstrated a significant conservation in longevity pathways between yeast and C. elegans. Among the mechanisms of aging identified, deletion of tRNA exporter LOS1 robustly extended lifespan. Dietary restriction (DR) and inhibition of mechanistic Target of Rapamycin (mTOR) exclude Los1 from the nucleus in a Rad53-dependent manner. Moreover, lifespan extension from deletion of LOS1 is nonadditive with DR or mTOR inhibition, and results in Gcn4 transcription factor activation. Thus, the DNA damage response and mTOR converge on Los1-mediated nuclear tRNA export to regulate Gcn4 activity and aging.


Asunto(s)
Envejecimiento/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Longevidad/genética , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Saccharomyces cerevisiae/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Caenorhabditis elegans/genética , Restricción Calórica , Daño del ADN/genética , Eliminación de Gen , Regulación de la Expresión Génica/genética , Genoma , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA