Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nature ; 630(8017): 636-642, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811732

RESUMEN

Chemical vapour deposition (CVD) synthesis of graphene on copper has been broadly adopted since the first demonstration of this process1. However, widespread use of CVD-grown graphene for basic science and applications has been hindered by challenges with reproducibility2 and quality3. Here we identify trace oxygen as a key factor determining the growth trajectory and quality for graphene grown by low-pressure CVD. Oxygen-free chemical vapour deposition (OF-CVD) synthesis is fast and highly reproducible, with kinetics that can be described by a compact model, whereas adding trace oxygen leads to suppressed nucleation and slower/incomplete growth. Oxygen affects graphene quality as assessed by surface contamination, emergence of the Raman D peak and decrease in electrical conductivity. Epitaxial graphene grown in oxygen-free conditions is contamination-free and shows no detectable D peak. After dry transfer and boron nitride encapsulation, it shows room-temperature electrical-transport behaviour close to that of exfoliated graphene. A graphite-gated device shows well-developed integer and fractional quantum Hall effects. By highlighting the importance of eliminating trace oxygen, this work provides guidance for future CVD system design and operation. The increased reproducibility and quality afforded by OF-CVD synthesis will broadly influence basic research and applications of graphene.

2.
Nano Lett ; 24(30): 9169-9177, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39024465

RESUMEN

The manipulation of spin-phonon coupling in both formations and explorations of magnetism in two-dimensional van der Waals ferromagnetic semiconductors facilitates unprecedented prospects for spintronic devices. The interlayer engineering with spin-phonon coupling promises controllable magnetism via organic cation intercalation. Here, spectroscopic evidence reveals the intercalation effect on the intrinsic magnetic and electronic transitions in quasi-two-dimensional Cr2Ge2Te6 using tetrabutyl ammonium (TBA+) as the intercalant. The temperature evolution of Raman modes, Eg3 and Ag1, along with the magnetization measurements, unambiguously captures the enhancement of the ferromagnetic Curie temperature in the intercalated heterostructure. Moreover, the Eg4 mode highlights the increased effect of spin-phonon interaction in magnetic-order-induced lattice distortion. Combined with the first-principle calculations, we observed a substantial number of electrons transferred from TBA+ to Cr through the interface. The interplay between spin-phonon coupling and magnetic ordering in van der Waals magnets appeals for further understanding of the manipulation of magnetism in layered heterostructures.

3.
J Am Chem Soc ; 146(2): 1588-1602, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38170994

RESUMEN

Shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) and density functional theory (DFT) are used to probe Cl- adsorption and the order-disorder phase transition associated with the c(2 × 2) Cl- adlayer on Cu(100) in acid media. A two-component ν(Cu-Cl) vibrational band centered near 260 ± 1 cm-1 is used to track the potential dependence of Cl- adsorption. The potential dependence of the dominant 260 cm-1 component tracks the coverage of the fluctional c(2 × 2) Cl- phase on terraces in good agreement with the normalized intensity of the c(2 × 2) superstructure rods in prior surface X-ray diffraction (SXRD) studies. As the c(2 × 2) Cl- coverage approaches saturation, a second ν(Cu-Cl) component mode emerges between 290 and 300 cm-1 that coincides with the onset and stiffening of step faceting where Cl- occupies the threefold hollow sites to stabilize the metal kink saturated Cu <100> step edge. The formation of the c(2 × 2) Cl- adlayer is accompanied by the strengthening of ν(O-H) stretching modes in the adjacent non-hydrogen-bonded water at 3600 cm-1 and an increase in hydronium concentration evident in the flanking H2O modes at 3100 cm-1. The polarization of the water molecules and enrichment of hydronium arise from the combination of Cl- anionic character and lateral templating provided by the c(2 × 2) adlayer, consistent with SXRD studies. At negative potentials, Cl- desorption occurs followed by development of a sulfate νs(S═O) band. Below -1.1 V vs Hg/HgSO4, a new 200 cm-1 mode emerges congruent with hydride formation and surface reconstruction reported in electrochemical scanning tunneling microscopy studies.

4.
J Am Chem Soc ; 145(17): 9850-9856, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37083432

RESUMEN

Separating oxygen from air to create oxygen-enriched gas streams is a process that is significant in both industrial and medical fields. However, the prominent technologies for creating oxygen-enriched gas streams are both energy and infrastructure intensive as they use cryogenic temperatures or materials that adsorb N2 from air. The latter method is less efficient than the methods that adsorb O2 directly. Herein, we show, via a combination of gas adsorption isotherms, gas breakthrough experiments, neutron and synchrotron X-ray powder diffraction, Raman spectroscopy, and computational studies, that the metal-organic framework, Al(HCOO)3 (ALF), which is easily prepared at low cost from commodity chemicals, exhibits substantial O2 adsorption and excellent time-dependent O2/N2 selectivity in a range of 50-125 near dry ice/solvent (≈190 K) temperatures. The effective O2 adsorption with ALF at ≈190 K and ≈0.21 bar (the partial pressure of O2 in air) is ≈1.7 mmol/g, and at ice/salt temperatures (≈250 K), it is ≈0.3 mmol/g. Though the kinetics for full adsorption of O2 near 190 K are slower than at temperatures nearer 250 K, the kinetics for initial O2 adsorption are fast, suggesting that O2 separation using ALF with rapid temperature swings at ambient pressures is a potentially viable choice for low-cost air separation applications. We also present synthetic strategies for improving the kinetics of this family of compounds, namely, via Al/Fe solid solutions. To the best of our knowledge, ALF has the highest O2/N2 sorption selectivity among MOF adsorbents without open metal sites as verified by co-adsorption experiments..

5.
Angew Chem Int Ed Engl ; 60(43): 23134-23141, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34424583

RESUMEN

In targeting reduced valent lanthanide chalcogenides, we report the first nanoparticle synthesis of the mixed-valent ferromagnets Eu3 S4 and EuSm2 S4 . Using divalent lanthanide halides with bis(trimethylsilyl)sulfide and oleylamine, we prepared nanoparticles of EuS, Eu3 S4 , EuSm2 S4 , SmS1.9 , and Sm3 S4 . All nanoparticle phases were identified using powder X-ray diffraction, transmission electron microscopy was used to confirm morphology and nanoparticle size, and magnetic susceptibility measurements for determining the ordering temperatures and valence. The UV/Vis, Raman and X-ray photoelectron spectroscopies for each phase were compared. Surprisingly, the phase is influenced by the halide and the reaction temperature, where EuCl2 formed EuS while EuI2 formed Eu3 S4 , highlighting the role of kinetics in phase stabilization. Interestingly, at lower temperatures EuI2 initially forms EuS, and converts over time to Eu3 S4 .

6.
Nano Lett ; 19(10): 7256-7264, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31507183

RESUMEN

Over the past decade, substantial progress has been made in the chemical control (chiral enrichment, length sorting, handedness selectivity, and filling substance) of single-wall carbon nanotubes (SWCNTs). Recently, it was shown that large, horizontally aligned films can be created out of postprocessed SWCNT solutions. Here, we use machine-vision automation and parallelization to simultaneously produce globally aligned SWCNT films using pressure-driven filtration. Feedback control enables filtration to occur with a constant flow rate that not only improves the nematic ordering of the SWCNT films but also provides the ability to align a wide range of SWCNT types and on a variety of nanoporous membranes using the same filtration parameters. Using polarized optical spectroscopic techniques, we show that under standard implementation, meniscus combing produces a two-dimensional radial SWCNT alignment on one side of the film. After we flatten the meniscus through silanization, spatially resolved nematicity maps on both sides of the SWCNT film reveal global alignment across the entire structure. From experiments changing ionic strength and membrane charging, we provide evidence that the SWCNT alignment mechanism stems from an interplay of intertube interactions and ordered membrane charging. This work opens up the possibility of creating globally aligned SWCNT film structures for a new generation of nanotube electronics and optical control elements.

7.
Carbon N Y ; 1422019.
Artículo en Inglés | MEDLINE | ID: mdl-31097837

RESUMEN

Monolayer epitaxial graphene (EG) has been shown to have clearly superior properties for the development of quantized Hall resistance (QHR) standards. One major difficulty with QHR devices based on EG is that their electrical properties drift slowly over time if the device is stored in air due to adsorption of atmospheric molecular dopants. The crucial parameter for device stability is the charge carrier density, which helps determine the magnetic flux density required for precise QHR measurements. This work presents one solution to this problem of instability in air by functionalizing the surface of EG devices with chromium tricarbonyl -Cr(CO)3. Observations of carrier density stability in air over the course of one year are reported, as well as the ability to tune the carrier density by annealing the devices. For low temperature annealing, the presence of Cr(CO)3 stabilizes the electrical properties and allows for the reversible tuning of the carrier density in millimeter-scale graphene devices close to the Dirac point. Precision measurements in the quantum Hall regime show no detrimental effect on the carrier mobility.

8.
Artículo en Inglés | MEDLINE | ID: mdl-34877178

RESUMEN

The growth of transition metal dichalcogenide (TMDC) alloys provides an opportunity to experimentally access information elucidating how optical properties change with gradual substitutions in the lattice compared with their pure compositions. In this work, we performed growths of alloyed crystals with stoichiometric compositions between pure forms of NbSe2 and WSe2, followed by an optical analysis of those alloys by utilizing Raman spectroscopy and spectroscopic ellipsometry.

9.
Microelectron Eng ; 194: 51-55, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29881131

RESUMEN

Homogeneous, single-crystal, monolayer epitaxial graphene (EG) is the one of most promising candidates for the advancement of quantized Hall resistance (QHR) standards. A remaining challenge for the electrical characterization of EG-based quantum Hall devices as a useful tool for metrology is that they are electrically unstable when exposed to air due to the adsorption of and interaction with atmospheric molecular dopants. The resulting changes in the charge carrier density become apparent by variations in the surface conductivity, the charge carrier mobility, and may result in a transition from n-type to p-type conductivity. This work evaluates the use of Parylene C and Parylene N as passivation layers for EG. Electronic transport of EG quantum Hall devices and non-contact microwave perturbation measurements of millimeter-sized areas of EG are both performed on bare and Parylene coated samples to test the efficacy of the passivation layers. The reported results, showing a significant improvement in passivation due to Parylene deposition, suggest a method for the mass production of millimeter-scale graphene devices with stable electrical properties.

10.
Nano Lett ; 17(10): 5897-5907, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28820602

RESUMEN

The strong in-plane anisotropy of rhenium disulfide (ReS2) offers an additional physical parameter that can be tuned for advanced applications such as logic circuits, thin-film polarizers, and polarization-sensitive photodetectors. ReS2 also presents advantages for optoelectronics, as it is both a direct-gap semiconductor for few-layer thicknesses (unlike MoS2 or WS2) and stable in air (unlike black phosphorus). Raman spectroscopy is one of the most powerful characterization techniques to nondestructively and sensitively probe the fundamental photophysics of a 2D material. Here, we perform a thorough study of the resonant Raman response of the 18 first-order phonons in ReS2 at various layer thicknesses and crystal orientations. Remarkably, we discover that, as opposed to a general increase in intensity of all of the Raman modes at excitonic transitions, each of the 18 modes behave differently relative to each other as a function of laser excitation, layer thickness, and orientation in a manner that highlights the importance of electron-phonon coupling in ReS2. In addition, we correct an unrecognized error in the calculation of the optical interference enhancement of the Raman signal of transition metal dichalcogenides on SiO2/Si substrates that has propagated through various reports. For ReS2, this correction is critical to properly assessing the resonant Raman behavior. We also implemented a perturbation approach to calculate frequency-dependent Raman intensities based on first-principles and demonstrate that, despite the neglect of excitonic effects, useful trends in the Raman intensities of monolayer and bulk ReS2 at different laser energies can be accurately captured. Finally, the phonon dispersion calculated from first-principles is used to address the possible origins of unexplained peaks observed in the Raman spectra, such as infrared-active modes, defects, and second-order processes.

11.
Small ; 13(26)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28544485

RESUMEN

Regarding the improvement of current quantized Hall resistance (QHR) standards, one promising avenue is the growth of homogeneous monolayer epitaxial graphene (EG). A clean and simple process is used to produce large, precise areas of EG. Properties like the surface conductivity and dielectric loss tangent remain unstable when EG is exposed to air due to doping from molecular adsorption. Experimental results are reported on the extraction of the surface conductivity and dielectric loss tangent from data taken with a noncontact resonance microwave cavity, assembled with an air-filled, standard R100 rectangular waveguide configuration. By using amorphous boron nitride (a-BN) as an encapsulation layer, stability of EG's electrical properties under ambient laboratory conditions is greatly improved. Moreover, samples are exposed to a variety of environmental and chemical conditions. Both thicknesses of a-BN encapsulation are sufficient to preserve surface conductivity and dielectric loss tangent to within 10% of its previously measured value, a result which has essential importance in the mass production of millimeter-scale graphene devices demonstrating electrical stability.

12.
Carbon N Y ; 115: 229-236, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28924301

RESUMEN

Quantized magnetotransport is observed in 5.6 × 5.6 mm2 epitaxial graphene devices, grown using highly constrained sublimation on the Si-face of SiC(0001) at high temperature (1900 °C). The precise quantized Hall resistance of [Formula: see text] is maintained up to record level of critical current Ixx = 0.72 mA at T = 3.1 K and 9 T in a device where Raman microscopy reveals low and homogeneous strain. Adsorption-induced molecular doping in a second device reduced the carrier concentration close to the Dirac point (n ≈ 1010 cm-2), where mobility of 18760 cm2/V is measured over an area of 10 mm2. Atomic force, confocal optical, and Raman microscopies are used to characterize the large-scale devices, and reveal improved SiC terrace topography and the structure of the graphene layer. Our results show that the structural uniformity of epitaxial graphene produced by face-to-graphite processing contributes to millimeter-scale transport homogeneity, and will prove useful for scientific and commercial applications.

13.
Carbon N Y ; 96: 311-315, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-27840449

RESUMEN

We present an investigation on Fe-catalyzed etching of graphite by dewetting Fe thin films on graphite in forming gas. Raman mapping of the etched graphite shows thickness variation in the etched channels and reveals that the edges are predominately terminated in zigzag configuration. X-ray diffraction and photoelectron spectroscopy measurements identify that the catalytic particles are Fe with the presence of iron carbide and iron oxides. The existence of iron carbide indicates that, in additional to carbon hydrogenation, carbon dissolution into Fe is also involved during etching. Furthermore, the catalytic particles can be re-activated upon a second annealing in forming gas.

14.
Nano Lett ; 15(3): 1642-6, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25719939

RESUMEN

This work expands the redox chemistry of single-wall carbon nanotubes (SWCNTs) by investigating its role in a number of SWCNT sorting processes. Using a polyethylene glycol (PEG)/dextran (DX) aqueous two-phase system, we show that electron-transfer between redox molecules and SWCNTs triggers reorganization of the surfactant coating layer, leading to strong modulation of nanotube partition in the two phases. While the DX phase is thermodynamically more favored by an oxidized SWCNT mixture, the mildly reducing PEG phase is able to recover SWCNTs from oxidation and extract them successively from the DX phase. Remarkably, the extraction order follows SWCNT bandgap: semiconducting nanotubes of larger bandgap first, followed by semiconducting nanotubes of smaller bandgap, then nonarmchair metallic tubes of small but nonvanishing bandgap, and finally armchair metallic nanotubes of zero bandgap. Furthermore, we show that redox-induced surfactant reorganization is a common phenomenon, affecting nanotube buoyancy in a density gradient field, affinity to polymer matrices, and solubility in organic solvents. These findings establish redox modulation of surfactant coating structures as a general mechanism for tuning a diverse range of SWCNT sorting processes and demonstrate for the first time that armchair and nonarmchair metallic SWCNTs can be separated by their differential response to redox.

15.
Methods ; 68(2): 338-47, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24662479

RESUMEN

Raman spectroscopy is a powerful tool for the elucidation of qualitative and quantitative information from biological systems and has huge potential in areas such as biotechnologies, drug discovery, agro-chemical research and clinical diagnostics. This report summarises the principal Raman techniques applied to biomedical systems and discusses the challenges that exist to the wide spread adoption of Raman spectroscopy.


Asunto(s)
Óptica y Fotónica , Espectrometría Raman/métodos , Humanos , Dinámicas no Lineales
16.
ACS Appl Mater Interfaces ; 16(40): 54328-54343, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39321034

RESUMEN

High-crystal-quality nanoferrites with short surface ligands (oleic acid) were recently shown to exhibit enhanced sensitivity and spatial resolution, likely due to chain formation (uniaxial assemblies of particles) for magnetic particle imaging (MPI). Here, we develop a simple one-pot thermal decomposition approach to produce ferrite (iron oxide) magnetic nano-objects (MNOs) that strongly interact magnetically and have good synthetic reproducibility. The ferrite MNOs were physically characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and dynamic light scattering. The MNOs were magnetically characterized by magnetometry and magnetic particle spectroscopy (MPS) to study their interactions, dynamics, and suitability for spatially resolved magnetic thermometry. The MNOs were synthesized in a range of sizes between 12 nm and 27 nm, showing that MNOs below a minimum size do not exhibit dynamic interactions/significant increased response and that a larger field is required for chain formation as size increases. In addition to size effects, we explore the role of ligand length, environment (liquid vs solid), and concentration on the proposed chain formation. The experimental results were then correlated to micromagnetic simulations to gain further insight into the formation of chains. Compared to some existing MPI tracers, our ferrite MNOs exhibit enhanced signal (up to about 37×) and spatial resolution (up to about 9×) under certain limited (ferrite-MNO optimal) field and frequency conditions used. MPS as a function of temperature and drive field amplitude was performed, showing promise for spatially resolved thermometry. These results confirm the importance of tuning the frequency and amplitude of the drive field for optimal imaging/thermal performance.

17.
Anal Chem ; 85(3): 1382-8, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23259532

RESUMEN

Length fractionation of colloidal single-wall carbon nanotube (SWCNT) dispersions is required for many studies. Size-exclusion chromatography (SEC) has been developed as a reliable method for high-resolution length fractionation of DNA-dispersed SWCNTs but has not been applied to surfactant-dispersed SWCNTs due to their lower dispersion stability and tendency to adsorb onto SEC stationary phases. Here, we report that SEC length fractionation can be achieved for bile salt dispersed SWCNTs by using porous silica-based beads as the stationary phase and bile salt solution as the mobile phase. We demonstrate that the SEC length sorting method can be combined with existing ultracentrifugation SWCNT sorting methods to produce "orthogonally sorted" samples, including length sorted semiconducting SWCNTs, which are important for electronics applications as well as length sorted empty-core SWCNTs. Importantly, we show that unlike simple length fractionation by SEC or any other method, orthogonal sorting produces samples of consistent quality for different length fractions, with similar UV-vis-nearIR absorption and Raman spectral features.

18.
Anal Chem ; 85(17): 8102-11, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23855585

RESUMEN

We compare a coherent Raman imaging modality, broadband coherent anti-Stokes Raman scattering (BCARS) microscopy, with spontaneous Raman microscopy for quantitative and qualitative assessment of multicomponent pharmaceuticals. Indomethacin was used as a model active pharmaceutical ingredient (API) and was analyzed in a tabulated solid dosage form, embedded within commonly used excipients. In comparison with wide-field spontaneous Raman chemical imaging, BCARS acquired images 10× faster, at higher spatiochemical resolution and with spectra of much higher SNR, eliminating the need for multivariate methods to identify chemical components. The significant increase in spatiochemical resolution allowed identification of an unanticipated API phase that was missed by the spontaneous wide-field method and bulk Raman spectroscopy. We confirmed the presence of the unanticipated API phase using confocal spontaneous Raman, which provided spatiochemical resolution similar to BCARS but at 100× slower acquisition times.


Asunto(s)
Formas de Dosificación , Microscopía/métodos , Preparaciones Farmacéuticas/análisis , Espectrometría Raman/métodos , Preparaciones Farmacéuticas/química , Difracción de Rayos X/métodos
19.
Metrologia ; 50(6): 663-678, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26361398

RESUMEN

This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin-Rammler-Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a framework for assessing nanoparticle size distributions using TEM for image acquisition.

20.
ACS Appl Mater Interfaces ; 15(10): 13439-13448, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36877093

RESUMEN

Temperature is a fundamental physical quantity important to the physical and biological sciences. Measurement of temperature within an optically inaccessible three-dimensional (3D) volume at microscale resolution is currently limited. Thermal magnetic particle imaging (T-MPI), a temperature variant of magnetic particle imaging (MPI), hopes to solve this deficiency. For this thermometry technique, magnetic nano-objects (MNOs) with strong temperature-dependent magnetization (thermosensitivity) around the temperature of interest are required; here, we focus between 200 K and 310 K. We demonstrate that thermosensitivity can be amplified in MNOs consisting of ferrimagnetic (FiM) iron oxide (ferrite) and antiferromagnetic (AFM) cobalt oxide (CoO) through interface effects. The FiM/AFM MNOs are characterized by X-ray diffraction (XRD), (scanning) transmission electron microscopy (STEM/TEM), dynamic light scattering (DLS), and Raman spectroscopy. Thermosensitivity is evaluated and quantified by temperature-dependent magnetic measurements. The FiM/AFM exchange coupling is confirmed by field-cooled (FC) hysteresis loops measured at 100 K. Magnetic particle spectroscopy (MPS) measurements were performed at room temperature to evaluate the MNOs MPI response. This initial study shows that FiM/AFM interfacial magnetic coupling is a viable method to increase thermosensitivity in MNOs for T-MPI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA