Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 231(2): 763-776, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33507570

RESUMEN

The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.


Asunto(s)
Micorrizas , Ecosistema , Hongos , Concentración de Iones de Hidrógeno , Filogenia , Suelo , Microbiología del Suelo , Temperatura
2.
Mol Ecol ; 26(18): 4846-4858, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28734072

RESUMEN

Fungi have important roles as decomposers, mycorrhizal root symbionts and pathogens in forest ecosystems, but there is limited information about their diversity and composition at the landscape scale. This work aimed to disentangle the factors underlying fungal richness and composition along the landscape-scale moisture, organic matter and productivity gradients. Using high-throughput sequencing, we identified soil fungi from 54 low-productivity Pinus sylvestris-dominated plots across three study areas in Estonia and determined the main predictors of fungal richness based on edaphic, floristic and spatial variables. Fungal richness displayed unimodal relationship with organic matter and deduced soil moisture. Plant richness and productivity constituted the key predictors for taxonomic richness of functional guilds. Composition of fungi and the main ectomycorrhizal fungal lineages and hyphal exploration types was segregated by moisture availability and soil nitrogen. We conclude that plant productivity and diversity determine the richness and proportion of most functional groups of soil fungi in low-productive pine forests on a landscape scale. Adjacent stands of pine forest may differ greatly in the dominance of functional guilds that have marked effects on soil carbon and nitrogen cycling in these forest ecosystems.


Asunto(s)
Biodiversidad , Bosques , Hongos/clasificación , Plantas/clasificación , Microbiología del Suelo , Humedales , Ciclo del Carbono , Estonia , Micorrizas , Ciclo del Nitrógeno , Pinus sylvestris , Suelo/química
3.
Front Microbiol ; 11: 1953, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013735

RESUMEN

Soil microbiome has a pivotal role in ecosystem functioning, yet little is known about its build-up from local to regional scales. In a multi-year regional-scale survey involving 1251 plots and long-read third-generation sequencing, we found that soil pH has the strongest effect on the diversity of fungi and its multiple taxonomic and functional groups. The pH effects were typically unimodal, usually both direct and indirect through tree species, soil nutrients or mold abundance. Individual tree species, particularly Pinus sylvestris, Picea abies, and Populus x wettsteinii, and overall ectomycorrhizal plant proportion had relatively stronger effects on the diversity of biotrophic fungi than saprotrophic fungi. We found strong temporal sampling and investigator biases for the abundance of molds, but generally all spatial, temporal and microclimatic effects were weak. Richness of fungi and several functional groups was highest in woodlands and around ruins of buildings but lowest in bogs, with marked group-specific trends. In contrast to our expectations, diversity of soil fungi tended to be higher in forest island habitats potentially due to the edge effect, but fungal richness declined with island distance and in response to forest fragmentation. Virgin forests supported somewhat higher fungal diversity than old non-pristine forests, but there were no differences in richness between natural and anthropogenic habitats such as parks and coppiced gardens. Diversity of most fungal groups suffered from management of seminatural woodlands and parks and thinning of forests, but especially for forests the results depended on fungal group and time since partial harvesting. We conclude that the positive effects of tree diversity on overall fungal richness represent a combined niche effect of soil properties and intimate associations.

4.
Mol Ecol Resour ; 17(6): e234-e240, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28544559

RESUMEN

High-throughput sequencing methods have become a routine analysis tool in environmental sciences as well as in public and private sector. These methods provide vast amount of data, which need to be analysed in several steps. Although the bioinformatics may be applied using several public tools, many analytical pipelines allow too few options for the optimal analysis for more complicated or customized designs. Here, we introduce PipeCraft, a flexible and handy bioinformatics pipeline with a user-friendly graphical interface that links several public tools for analysing amplicon sequencing data. Users are able to customize the pipeline by selecting the most suitable tools and options to process raw sequences from Illumina, Pacific Biosciences, Ion Torrent and Roche 454 sequencing platforms. We described the design and options of PipeCraft and evaluated its performance by analysing the data sets from three different sequencing platforms. We demonstrated that PipeCraft is able to process large data sets within 24 hr. The graphical user interface and the automated links between various bioinformatics tools enable easy customization of the workflow. All analytical steps and options are recorded in log files and are easily traceable.


Asunto(s)
Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos , Gráficos por Computador
5.
ISME J ; 10(2): 346-62, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26172210

RESUMEN

Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se.


Asunto(s)
Biodiversidad , Eucariontes/aislamiento & purificación , Hongos/aislamiento & purificación , Microbiología del Suelo , Suelo/parasitología , Animales , Biomasa , Biota , Eucariontes/clasificación , Eucariontes/genética , Finlandia , Hongos/clasificación , Hongos/genética , Suelo/química , Árboles/microbiología
6.
Science ; 346(6213): 1256688, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25430773

RESUMEN

Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework.


Asunto(s)
Hongos/clasificación , Hongos/fisiología , Microbiología del Suelo , Suelo , Código de Barras del ADN Taxonómico , Bosques , Hongos/genética , Geografía , Pradera , Tundra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA