Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 33(24)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35263731

RESUMEN

We report on the influence of the liquid droplet composition on the Sn incorporation in GeSn nanowires (NWs) grown by the vapor-liquid-solid (VLS) mechanism with different catalysts. The variation of the NW growth rate and morphology with the growth temperature is investigated and 400 °C is identified as the best temperature to grow the longest untapered NWs with a growth rate of 520 nm min-1. When GeSn NWs are grown with pure Au droplets, we observe a core-shell like structure with a low Sn concentration of less than 2% in the NW core regardless of the growth temperature. We then investigate the impact of adding different fractions of Ag, Al, Ga and Si to Au catalyst on the incorporation of Sn. A significant improvement of Sn incorporation up to 9% is obtained using 75:25 Au-Al catalyst, with a high degree of spatial homogeneity across the NW volume. Thermodynamic model based on the energy minimization at the solid-liquid interface is developed, showing a good correlation with the data. These results can be useful for obtaining technologically important GeSn material with a high Sn content and, more generally, for tuning the composition of VLS NWs in other material systems.

2.
Nanotechnology ; 32(15): 155601, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33434893

RESUMEN

Controlled growth of In-rich InGaN nanowires/nanorods (NRs) has long been considered as a very challenging task. Here, we present the first attempt to fabricate InGaN NRs by selective area growth using hydride vapor phase epitaxy. It is shown that InGaN NRs with different indium contents up to 90% can be grown by varying the In/Ga flow ratio. Furthermore, nanowires are observed on the surface of the grown NRs with a density that is proportional to the Ga content. The impact of varying the NH3 partial pressure is investigated to suppress the growth of these nanowires. It is shown that the nanowire density is considerably reduced by increasing the NH3 content in the vapor phase. We attribute the emergence of the nanowires to the final step of growth occurring after stopping the NH3 flow and cooling down the substrate. This is supported by a theoretical model based on the calculation of the supersaturation of the ternary InGaN alloy in interaction with the vapor phase as a function of different parameters assessed at the end of growth. It is shown that the decomposition of the InGaN solid alloy indeed becomes favorable below a critical value of the NH3 partial pressure. The time needed to reach this value increases with increasing the input flow of NH3, and therefore the alloy decomposition leading to the formation of nanowires becomes less effective. These results should be useful for fundamental understanding of the growth of InGaN nanostructures and may help to control their morphology and chemical composition required for device applications.

3.
Nanotechnology ; 31(40): 405602, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-32503017

RESUMEN

It is well-known that the chemical potential which drives the vapor-liquid-solid growth of semiconductor nanowires is strongly affected by the liquid phase composition. Here, we investigate theoretically how the droplet composition influences the nucleation of Au-catalyzed GeSn nanowires on Ge(111) and Si(111) substrates. We compare the chemical potentials in an Au-Ge-Sn catalyst droplet before and after adding Ga and/or Si atoms. It is found that the presence of these atoms enhances the nucleation rate of nanowires on both substrates. Theoretical results are compared to experimental data on GeSn nanowires grown in a hot-wall reduced pressure chemical vapor deposition reactor. It is shown that the intentional addition of Ga in the de-wetting step improves the uniformity of the nanowire dimensions and yields higher density of nanowires over Ge(111) substrates. The nanowire growth on Si(111) substrate occurs only when Ga and/or Si are added to Au droplets. These results show that controlling the composition of the catalyst droplet is crucial for improving the quality of GeSn nanowires.

4.
Nano Lett ; 19(7): 4498-4504, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31203632

RESUMEN

The incorporation of Si into vapor-liquid-solid GaAs nanowires often leads to p-type doping, whereas it is routinely used as an n-dopant of planar layers. This property limits the applications of GaAs nanowires in electronic and optoelectronic devices. The strong amphoteric behavior of Si in nanowires is not yet fully understood. Here, we present the first attempt to quantify this behavior as a function of the droplet composition and temperature. It is shown that the doping type critically depends on the As/Ga ratio in the droplet. In sharp contrast to vapor-solid growth, the droplet contains very few As atoms, which enhance their reverse transfer from solid to liquid. As a result, Si atoms preferentially replace As in GaAs, leading to p-type doping in nanowires. Hydride vapor phase epitaxy provides the highest As concentrations in the catalyst droplets during their vapor-liquid-solid growth, resulting in n-type dopant behavior of Si. We present experimental data on n-doped Si-doped GaAs nanowires grown by this method and explain the doping within our model. These results give a clear route for obtaining n-type or p-type Si doping in GaAs nanowires and may be extended to other III-V nanowires.

5.
Nanomaterials (Basel) ; 11(7)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206789

RESUMEN

The vapor-liquid-solid growth of III-V nanowires proceeds via the mononuclear regime, where only one island nucleates in each nanowire monolayer. The expansion of the monolayer is governed by the surface energetics depending on the monolayer size. Here, we study theoretically the role of surface energy in determining the monolayer morphology at a given coverage. The optimal monolayer configuration is obtained by minimizing the surface energy at different coverages for a set of energetic constants relevant for GaAs nanowires. In contrast to what has been assumed so far in the growth modeling of III-V nanowires, we find that the monolayer expansion may not be a continuous process. Rather, some portions of the already formed monolayer may dissolve on one of its sides, with simultaneous growth proceeding on the other side. These results are important for fundamental understanding of vapor-liquid-solid growth at the atomic level and have potential impacts on the statistics within the nanowire ensembles, crystal phase, and doping properties of III-V nanowires.

6.
Nanomaterials (Basel) ; 11(1)2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33401772

RESUMEN

Based on a thermodynamic model, we quantify the impact of adding silicon atoms to a catalyst droplet on the nucleation and growth of ternary III-V nanowires grown via the self-catalyzed vapor-liquid-solid process. Three technologically relevant ternaries are studied: InGaAs, AlGaAs and InGaN. For As-based alloys, it is shown that adding silicon atoms to the droplet increases the nanowire nucleation probability, which can increase by several orders magnitude depending on the initial chemical composition of the catalyst. Conversely, silicon atoms are found to suppress the nucleation rate of InGaN nanowires of different compositions. These results can be useful for understanding and controlling the vapor-liquid-solid growth of ternary III-V nanowires on silicon substrates as well as their intentional doping with Si.

7.
Nanomaterials (Basel) ; 10(5)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349326

RESUMEN

III-V nanowires grown by the vapor-liquid-solid method often show self-regulated oscillations of group V concentration in a catalyst droplet over the monolayer growth cycle. We investigate theoretically how this effect influences the electron-to-hole ratio in Si-doped GaAs nanowires. Several factors influencing the As depletion in the vapor-liquid-solid nanowire growth are considered, including the time-scale separation between the steps of island growth and refill, the "stopping effect" at very low As concentrations, and the maximum As concentration at nucleation and desorption. It is shown that the As depletion effect is stronger for slower nanowire elongation rates and faster for island growth relative to refill. Larger concentration oscillations suppress the electron-to-hole ratio and substantially enhance the tendency for the p-type Si doping of GaAs nanowires, which is a typical picture in molecular beam epitaxy. The oscillations become weaker and may finally disappear in vapor deposition techniques such as hydride vapor phase epitaxy, where the n-type Si doping of GaAs nanowires is more easily achievable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA