Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
FASEB J ; 36(1): e22067, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34914140

RESUMEN

The objective of the current study was to examine the drug-induced effects of the EP2 agonist, omidenapag (OMD), on human corneal stroma, two- and three-dimensional (2D and 3D) cultures of human corneal stroma fibroblasts (HCSFs). The drug-induced effects on 2D monolayers and 3D spheroids were characterized by examining the ultrastructures by scanning electron microscope (SEM), transendothelial electrical resistance (TEER) measurements, and fluorescein isothiocyanate (FITC)-dextran permeability. The physical properties of 3D spheroids with respect to size and stiffness were also examined. In addition, the gene expressions of extracellular matrix (ECM) molecules, including collagen (COL) 1, 4, and 6, and fibronectin (FN), a tissue inhibitor of metalloproteinase (TIMP) 1-4, matrix metalloproteinase (MMP) 2, 9, and 14, aquaporin1 (AQP1), and several endoplasmic reticulum (ER) stress-related factors were evaluated. In the 2D HCSFs, OMD induced (1) a significant increase in ECM deposits, as evidenced by SEM, the mRNA expression of COL4 and FN, and (2) a decrease in TEER values and a concentration-dependent increase in FITC-dextran permeability. In the case of 3D spheroids, OMD had no effect on size but a substantial increase in stiffness was observed. Furthermore, such OMD-induced effects on stiffness were dramatically modulated by the osmotic pressure of the system. In contrast to the above 2D cultures, among the ECM molecules and the modulators of 3D spheroids, namely, TIMPS and MMPs, the down-regulation of COL1, TIMP1 and 2 and the up-regulation of MMP9 were observed. Interestingly, such diversity in terms of OMD-induced gene expressions between 2D and 3D cultures was also recognized in AQP1 (2D; no significant change, 3D; significant up-regulation) and ER stress-related genes. The findings presented herein suggest that the EP2 agonist, OMD, alters the physical stiffness of 3D spheroids obtained from human corneal stroma fibroblasts and this alteration is dependent on the osmotic pressures. 2D and 3D cell cultures may be useful for evaluating the drug induced effects of OMD toward human corneal stroma.


Asunto(s)
Córnea/metabolismo , Fibroblastos/metabolismo , Presión Osmótica/efectos de los fármacos , Subtipo EP2 de Receptores de Prostaglandina E , Esferoides Celulares/metabolismo , Córnea/ultraestructura , Estrés del Retículo Endoplásmico , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Proteínas del Ojo/metabolismo , Femenino , Fibroblastos/ultraestructura , Humanos , Masculino , Subtipo EP2 de Receptores de Prostaglandina E/agonistas , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Esferoides Celulares/ultraestructura
2.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614215

RESUMEN

To elucidate the currently unknown molecular mechanisms responsible for the aberrant expression of recoverin (Rec) within cancerous cells, we examined two-dimensional (2D) and three-dimensional (3D) cultures of Rec-negative lung adenocarcinoma A549 cells which had been transfected with a plasmid containing human recoverin cDNA (A549 Rec) or an empty plasmid as a mock control (A549 MOCK). Using these cells, we measured cytotoxicity by several anti-tumor agents (2D), cellular metabolism including mitochondrial and glycolytic functions by a Seahorse bio-analyzer (2D), the physical properties, size and stiffness of the 3D spheroids, trypsin sensitivities (2D and 3D), and RNA sequencing analysis (2D). Compared with the A549 MOCK, the A549 Rec cells showed (1) more sensitivity toward anti-tumor agents (2D) and a 0.25% solution of trypsin (3D); (2) a metabolic shift from glycolysis to oxidative phosphorylation; and (3) the formation of larger and stiffer 3D spheroids. RNA sequencing analysis and bioinformatic analyses of the differentially expressed genes (DEGs) using Gene Ontology (GO) enrichment analysis suggested that aberrantly expressed Rec is most likely associated with several canonical pathways including G-protein-coupled receptor (GPCR)-mediated signaling and signaling by the cAMP response element binding protein (CREB). The findings reported here indicate that the aberrantly expressed Rec-induced modulation of the cell viability and drug sensitivity may be GPCR mediated.


Asunto(s)
Antineoplásicos , Humanos , Recoverina , Células A549 , Supervivencia Celular , Tripsina/farmacología , Antineoplásicos/farmacología , Receptores Acoplados a Proteínas G/genética , Esferoides Celulares
3.
Exp Cell Res ; 403(1): 112581, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33811906

RESUMEN

PURPOSE: To evaluate Nuclear Factor NF-κB (NF-κB) signaling on microglia activation, migration, and angiogenesis in laser-induced choroidal neovascularization (CNV). METHODS: Nine-week-old C57BL/6 male mice were randomly assigned to IMD-0354 treated or untreated groups (5 mice, 10 eyes per group). CNV was induced with a 532-nm laser. Laser spots (power 250 mW, spot size 100 µm, time of exposure 50 ms) were created in each eye using a slit-lamp delivery system. Selective inhibitor of nuclear factor kappa-B kinase subunit beta (IKK2) inhibitor IMD-0354 (10 µg) was delivered subconjunctivally; vehicle-treated mice were the control. The treatment effect on CNV development was assessed at five days post-CNV induction in vivo in C57BL/6 and Cx3cr1gfp/wt mice by fluorescent angiography, fundus imaging, and ex vivo by retinal flatmounts immunostaining and Western blot analysis of RPE/Choroidal/Scleral complexes (RCSC) lysates. In vitro evaluations of IMD-0354 effects were performed in the BV-2 microglial cell line using lipopolysaccharide (LPS) stimulation. RESULTS: IMD-0354 caused a significant reduction in the fluorescein leakage and size of the laser spot, as well as a reduction in microglial cell migration and suppression of phospho-IκBα, Vascular endothelial growth factor (VEGF-A), and Prostaglandin-endoperoxide synthase 2 (COX-2). In vivo and ex vivo observations demonstrated reduced lesion size in mice, CD68, and Allograft inflammatory factor 1 (IBA-1) positive microglia cells migration to the laser injury site in IMD-0354 treated eyes. The data further corroborate with GFP-positive cells infiltration of the CNV site in Cx3cr1wt/gfp mice. In vitro IMD-0354 (10-25 ng/ml) treatment reduced NF-κB activation, expression of COX-2, caused decreased Actin-F presence and organization, resulting in reduced BV-2 cells migration capacity. CONCLUSION: The present data indicate that NF-κB activation in microglia and it's migration capacity is involved in the development of laser CNV in mice. Its suppression by NF-κB inhibition might be a promising therapeutic strategy for wet AMD.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Microglía/metabolismo , FN-kappa B/metabolismo , Retina/metabolismo , Animales , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/patología , Modelos Animales de Enfermedad , Proteínas I-kappa B/metabolismo , Inflamación/metabolismo , Rayos Láser , Ratones Endogámicos C57BL
4.
Int J Mol Sci ; 23(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35628282

RESUMEN

The hypoxia associated with the transforming growth factor-ß2 (TGF-ß2)-induced epithelial mesenchymal transition (EMT) of human retinal pigment epithelium (HRPE) cells is well recognized as the essential underlying mechanism responsible for the development of proliferative retinal diseases. In vitro, three-dimensional (3D) models associated with spontaneous O2 gradients can be used to recapitulate the pathological levels of hypoxia to study the effect of hypoxia on the TGF-ß2-induced EMT of HRPE cells in detail, we used two-dimensional-(2D) and 3D-cultured HRPE cells. TGF-ß2 and hypoxia significantly and synergistically increased the barrier function of the 2D HRPE monolayers, as evidenced by TEER measurements, the downsizing and stiffening of the 3D HRPE spheroids and the mRNA expression of most of the ECM proteins. A real-time metabolic analysis indicated that TGF-ß2 caused a decrease in the maximal capacity of mitochondrial oxidative phosphorylation in the 2D HRPE cells, whereas, in the case of 3D HRPE spheroids, TGF-ß2 increased proton leakage. The findings reported herein indicate that the TGF-ß2-induced EMT of both the 2D and 3D cultured HRPE cells were greatly modified by hypoxia, but during these EMT processes, the metabolic plasticity was different between 2D and 3D HRPE cells, suggesting that the mechanisms responsible for the EMT of the HRPE cells may be variable during their spatial spreading.


Asunto(s)
Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta2 , Células Cultivadas , Humanos , Hipoxia , Epitelio Pigmentado de la Retina/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta2/farmacología
5.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077314

RESUMEN

We report herein on the effects of all-trans retinoic acid (ATRA) on two-dimensional (2D) and three-dimensional (3D) cultures of human trabecular meshwork (HTM) cells that were treated with transforming growth factor ß2 (TGF-ß2). In the presence of 5 ng/mL TGF-ß2, the effects of ATRA on the following were observed: (1) the barrier function of the 2D HTM monolayers, as determined by trans-endothelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC) dextran permeability measurements; (2) a Seahorse cellular bio-metabolism analysis; (3) physical properties, including the size and stiffness, of 3D spheroids; (4) the gene expression of extracellular matrix (ECM) molecules, ECM modulators including tissue inhibitor of metalloproteinases (TIMPs), matrix metalloproteinases (MMPs), tight junction (TJ)-related molecules, and endoplasmic reticulum (ER)-stress-related factors. ATRA significantly inhibited the TGF-ß2-induced increase in the TEER values and FITC dextran permeability of the 2D monolayers, while an ATRA monotreatment induced similar effects as TGF-ß2. A real-time metabolic analysis revealed that ATRA significantly inhibited the TGF-ß2-induced shift in metabolic reserve from mitochondrial oxidative phosphorylation to glycolysis in 2D HTM cells, whereas ATRA alone did not induce significant metabolic changes. In contrast, ATRA induced the formation of substantially downsized and softer 3D spheroids in the absence and presence of TGF-ß2. The different effects induced by ATRA toward 2D and 3D HTM cells were also supported by the qPCR analysis of several proteins as above. The findings reported here indicate that ATRA may induce synergistic and beneficial effects on TGF-ß2-treated 2D- and 3D-cultured HTM cells; those effects varied significantly between the 2D and 3D cultures.


Asunto(s)
Glaucoma , Malla Trabecular , Técnicas de Cultivo Tridimensional de Células , Células Cultivadas , Glaucoma/metabolismo , Humanos , Malla Trabecular/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta2/farmacología , Tretinoina/metabolismo , Tretinoina/farmacología
6.
Curr Issues Mol Biol ; 43(3): 1715-1725, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34698138

RESUMEN

In the current study, to elucidate the pathological characteristics of myopic scleral stroma, three-dimensional (3D) cultures of human scleral stroma fibroblasts (HSSFs) with several axial lengths (AL, 22.80-30.63 mm) that were obtained from patients (n = 7) were examined. Among the three groups of ALs, <25 mm (n = 2), 25-30 mm (n = 2), and >30 mm (n = 3), the physical properties of the 3D HSSFs spheroids with respect to size and stiffness, the expressions of extracellular matrix (ECM) molecules, including collagen (COL) 1, 4, and 6 and fibronectin (FN) by qPCR and immunohistochemistry (IHC), and the mRNA expression of ECM metabolism modulators including hypoxia-inducible factor 1A (HIF 1A), HIF 2A, lysyl oxidase (LOX), tissue inhibitor of metalloproteinase (TIMP) 1-4, and matrix metalloproteinase (MMP) 2, 9, and 14 as well as several endoplasmic reticulum (ER) stress-related factors were compared. In the largest AL group (>30 mm), the 3D HSSFs spheroids were (1) significantly down-sized and less stiff compared to the other groups, and (2) significant changes were detected in the expression of some ECMs (qPCR; the up-regulation of COL1 and COL4, and the down-regulation of FN, IHC; the up-regulation of COL1 and FN, and down-regulation of COL4). The mRNA expressions of ECM modulators and ER stress-related genes were also altered with increasing AL length (up-regulation of HIF2A, MMP2, XBP1, and MMP14, down-regulation of LOX, TIMP 2 and 3, GRP78, GRP94, IRE1, and ATF6). In addition, a substantial down-regulation of some ER stress-related genes (ATF4, sXPB1 and CHOP) was observed in the 25-30 mm AL group. The findings presented herein suggest that small and stiffer 3D HSSFs spheroids in the largest AL group may accurately replicate the pathological significance of scleral thinning and weakening in myopic eyes. In addition, the modulation of several related factors among the different AL groups may also provide significant insights into our understanding of the molecular mechanisms responsible for causing myopic changes in the sclera.


Asunto(s)
Fibroblastos/metabolismo , Fibroblastos/patología , Esclerótica , Células del Estroma/metabolismo , Células del Estroma/patología , Biomarcadores , Técnicas de Cultivo de Célula , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Inmunohistoquímica , Esferoides Celulares
7.
Exp Eye Res ; 205: 108489, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33587909

RESUMEN

3D organoid cultures were used to elucidate the periocular effects of several anti-glaucoma drugs including a prostaglandin F2α analogue (bimatoprost acid; BIM-A), EP2 agonist (omidenepag; OMD) or a Rho-associated coiled-coil containing protein kinase (ROCK) inhibitor (ripasudil; Rip) on Grave's orbitopathy (GO) related orbital fatty tissue. 3D organoids were prepared from GO related human orbital fibroblasts (GHOFs) obtained from patients with GO. The effects of either 100 nM BIM-A, 100 nM OMD or 10 µM Rip on the 3D GHOFs organoids were examined with respect to organoid size, physical properties by a micro-squeezer, and the mRNA expression of extracellular matrix (ECM) proteins including collagen (COL) 1, COL 4, COL 6, and fibronectin (FN), ECM regulatory genes including lysyl oxidase (LOX), Connective Tissue Growth Factor (CTGF) and inflammatory cytokines including interleukin-1ß (IL1ß) and interleukin-6 (IL6). The size of the 3D GHOFs organoids decreased substantially in the presence of BIM-A, but also increased substantially in the presence of the others (OMD or Rip). The physical stiffness of the 3D GHOFs organoids was significantly decreased by Rip. BIM-A caused significantly the down-regulation of three ECM genes, Col 1, Col 6 and Fn, and two ECM regulatory genes and the up-regulation of IL6. In the presence of OMD, two ECM genes, Col 1 and Fn, and LOX were significantly down-regulated but IL1ß and IL6 were significantly up-regulated. In the case of Rip, Col 1, FN and CTGF were significant down-regulated. Our present findings indicate that anti-glaucoma drugs modulate the structures and physical properties 3D GHOFs organoids in different manners by modifying the gene expressions of ECM, ECM regulatory factors and inflammatory cytokines. The results indicate that the benefits and demerits of anti-glaucoma medications need to be scrutinized carefully, in cases of patients with GO.


Asunto(s)
Dinoprost/agonistas , Fibroblastos/efectos de los fármacos , Oftalmopatía de Graves/tratamiento farmacológico , Órbita/efectos de los fármacos , Organoides/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/agonistas , Quinasas Asociadas a rho/antagonistas & inhibidores , Bimatoprost/farmacología , Técnicas de Cultivo de Célula , Proteínas de la Matriz Extracelular/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica/fisiología , Glicina/análogos & derivados , Glicina/farmacología , Oftalmopatía de Graves/metabolismo , Humanos , Isoquinolinas/farmacología , Conformación Molecular , Órbita/patología , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Piridinas/farmacología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sulfonamidas/farmacología
8.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925005

RESUMEN

To elucidate the additive effects of an EP2 agonist, omidenepag (OMD) or butaprost (Buta) on the Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor, ripasudil (Rip) on adipose tissue, two- or three-dimension (2D or 3D) cultures of 3T3-L1 cells were analyzed by lipid staining, the mRNA expression of adipogenesis-related genes, extracellular matrix (ECM) molecules including collagen (Col) -1, -4 and -6, and fibronectin (Fn), and the sizes and physical properties of 3D organoids, as measured by a micro-squeezer. The results indicate that adipogenesis induced (1) an enlargement of the 3D organoids; (2) a substantial enhancement in lipid staining as well as the expression of the Pparγ, Ap2 and Leptin genes; (3) a significant softening of the 3D organoids, the effects of which were all enhanced by Rip except for Pparγ expression; and (4) a significant downregulation in Col1 and Fn, and a significant upregulation in Col4, Col6, the effects of which were unchanged by Rip. When adding the EP2 agonist to Rip, (1) the sizes of the 3D organoids were reduced substantially; (2) lipid staining was increased (OMD), or decreased (Buta); (3) the stiffness of the 3D organoids was substantially increased in Buta; (4-1) the expression of Pparγ was suppressed (2D, OMD) or increased (2D, Buta), and the expressions of Ap2 were downregulated (2D, 3D) and Leptin was increased (2D) or decreased (3D), (4-2) all the expressions of four ECM molecules were upregulated in 2D (2D), and in 3D, the expression of Col1, Col4 was upregulated. The collective findings reported herein indicate that the addition of an EP2 agonist, OMD or Buta significantly but differently modulate the Rip-induced effects on adipogenesis and the physical properties of 2D and 3D cultured 3T3-L1 cells.


Asunto(s)
Adipogénesis/efectos de los fármacos , Alprostadil/análogos & derivados , Glicina/análogos & derivados , Isoquinolinas/farmacología , Pirazoles/farmacología , Piridinas/farmacología , Sulfonamidas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Células 3T3-L1 , Alprostadil/farmacología , Animales , Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Glicina/farmacología , Ratones , Organoides , Subtipo EP2 de Receptores de Prostaglandina E/agonistas
9.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34769470

RESUMEN

PURPOSE: The objective of the current study was to evaluate the effects of the autotaxin (ATX)-lysophosphatidic acid (LPA) signaling axis on the human trabecular meshwork (HTM) in two-dimensional (2D) and three-dimensional (3D) cultures of HTM cells. METHODS: The effects were characterized by transendothelial electrical resistance (TEER) and FITC-dextran permeability (2D), measurements of size and stiffness (3D), and the expression of several genes, including extracellular matrix (ECM) molecules, their modulators, and endoplasmic reticulum (ER) stress-related factors. RESULTS: A one-day exposure to 200 nM LPA induced significant down-sizing effects of the 3D HTM spheroids, and these effects were enhanced slightly on longer exposure. The TEER and FITC-dextran permeability data indicate that LPA induced an increase in the barrier function of the 2D HTM monolayers. A one-day exposure to a 2 mg/L solution of ATX also resulted in a significant decrease in the sizes of the 3D HTM spheroids, and an increase in stiffness was also observed. The gene expression of several ECMs, their regulators and ER-stress related factors by the 3D HTM spheroids were altered by both ATX and LPA, but in different manners. CONCLUSIONS: The findings presented herein suggest that ATX may have additional roles in the human TM, in addition to the ATX-LPA signaling axis.


Asunto(s)
Lisofosfolípidos/farmacología , Hidrolasas Diéster Fosfóricas/farmacología , Malla Trabecular/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Humanos , Hidrolasas Diéster Fosfóricas/fisiología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/fisiología , Malla Trabecular/fisiología
10.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34298955

RESUMEN

PURPOSE: The effects of Rho-associated coiled-coil containing protein kinase (ROCK) 1 and 2 inhibitor, ripasudil hydrochloride hydrate (Rip), ROCK2 inhibitor, KD025 or rosiglitazone (Rosi) on two-dimension (2D) and three-dimension (3D) cultured human conjunctival fibroblasts (HconF) treated by transforming growth factor (TGFß2) were studied. METHODS: Two-dimension and three-dimension cultured HconF were examined by transendothelial electrical resistance (TEER, 2D), size and stiffness (3D), and the expression of the extracellular matrix (ECM) including collagen1 (COL1), COL4 and COL6, fibronectin (FN), and α-smooth muscle actin (αSMA) by quantitative PCR (2D, 3D) in the presence of Rip, KD025 or Rosi. RESULTS: TGFß2 caused a significant increase in (1) the TEER values (2D) which were greatly reduced by Rosi, (2) the stiffness of the 3D organoids which were substantially reduced by Rip or KD025, and (3) TGFß2 induced a significant up-regulation of all ECMs, except for COL6 (2D) or αSMA (3D), and down-regulation of COL6 (2D). Rosi caused a significant up-regulation of COL1, 4 and 6 (3D), and down-regulation of COL6 (2D) and αSMA (3D). Most of these TGFß2-induced expressions in the 2D and αSMA in the 3D were substantially inhibited by KD025, but COL4 and αSMA in 2D were further enhanced by Rip. CONCLUSION: The findings reported herein indicate that TGFß2 induces an increase in fibrogenetic changes on the plane and in the spatial space, and are inhibited by Rosi and ROCK inhibitors, respectively.


Asunto(s)
Conjuntiva/metabolismo , Fibroblastos/metabolismo , Rosiglitazona/farmacología , Factor de Crecimiento Transformador beta2/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Actinas/biosíntesis , Línea Celular , Colágeno/biosíntesis , Fibronectinas/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Quinasas Asociadas a rho/metabolismo
11.
Molecules ; 26(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34770791

RESUMEN

Effects of a pan-ROCK-inhibitor, ripasudil (Rip), and a ROCK2 inhibitor, KD025 on dexamethasone (DEX)-treated human trabecular meshwork (HTM) cells as a model of steroid-induced glaucoma were investigated. In the presence of Rip or KD025, DEX-treated HTM cells were subjected to permeability analysis of 2D monolayer by transendothelial electrical resistance (TEER) and FITC-dextran permeability, physical properties, size and stiffness analysis (3D), and qPCR of extracellular matrix (ECM), and their modulators. DEX resulted in a significant increase in the permeability, as well as a large and stiff 3D spheroid, and those effects were inhibited by Rip. In contrast, KD025 exerted opposite effects on the physical properties (down-sizing and softening). Furthermore, DEX induced several changes of gene expressions of ECM and their modulators were also modulated differently by Rip and KD025. The present findings indicate that Rip and KD025 induced opposite effects toward 2D and 3D cell cultures of DEX-treated HTM cells.


Asunto(s)
Dexametasona/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Malla Trabecular/citología , Malla Trabecular/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores , Biomarcadores , Técnicas de Cultivo de Célula , Células Cultivadas , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos
12.
Biomedicines ; 12(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38790973

RESUMEN

To elucidate the currently unknown molecular mechanisms responsible for the similarity and difference during the acquirement of resistance against gemcitabine (GEM) and paclitaxel (PTX) in patients with pancreatic carcinoma, we examined two-dimensional (2D) and three-dimensional (3D) cultures of parent MIA PaCa-2 cells (MIA PaCa-2-PA) and their GEM resistance cell line (MIA PaCa-2-GR) and PTX resistance (MIA PaCa-2-PR). Using these cells, we examined 3D spheroid configurations and cellular metabolism, including mitochondrial and glycolytic functions, with a Seahorse bio-analyzer and RNA sequencing analysis. Compared to the MIA PaCa-2-PA, (1) the formation of the 3D spheroids of MIA PaCa-2-GR or -PR was much slower, and (2) their mitochondrial and glycolytic functions were greatly modulated in MIA PaCa-2-GR or -PR, and such metabolic changes were also different between their 2D and 3D culture conditions. RNA sequencing and bioinformatic analyses of the differentially expressed genes (DEGs) using an ingenuity pathway analysis (IPA) suggested that various modulatory factors related to epithelial -mesenchymal transition (EMT) including STAT3, GLI1, ZNF367, NKX3-2, ZIC2, IFIT2, HEY1 and FBLX, may be the possible upstream regulators and/or causal network master regulators responsible for the acquirement of drug resistance in MIA PaCa-2-GR and -PR. In addition, among the prominently altered DEGs (Log2 fold changes more than 6 or less than -6), FABP5, IQSEC3, and GASK1B were identified as unique genes associated with their antisense RNA or pseudogenes, and among these, FABP5 and GASK1B are known to function as modulators of cancerous EMT. Therefore, the observations reported herein suggest that modulations of cancerous EMT may be key molecular mechanisms that are responsible for inducing chemoresistance against GEM or PTX in MIA PaCa-2 cells.

13.
Heliyon ; 9(10): e20713, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37867843

RESUMEN

Adipose tissues are closely related to physiological functions and pathological conditions in most organs. Although differentiated 3T3-L1 preadipocytes have been used for in vitro adipose studies, the difference in cellular characteristics of adipogenic differentiation in two-dimensional (2D) culture and three-dimensional (3D) culture remain unclear. In this study, we evaluated gene expression patterns using RNA sequencing and metabolic functions using an extracellular flux analyzer in 3T3-L1 preadipocytes with and without adipogenic induction in 2D culture and 3D culture. In 2D culture, 565 up-regulated genes and 391 down-regulated genes were identified as differentially expressed genes (DEGs) by adipogenic induction of 3T3-L1 preadipocytes, whereas only 69 up-regulated genes and 59 down-regulated genes were identified as DEGs in 3D culture. Ingenuity Pathway Analysis (IPA) revealed that genes associated with lipid metabolism were identified as 2 out of the top 3 causal networks related to diseases and function in 3D spheroids, whereas only one network related to lipid metabolism was identified within the top 9 of these causal networks in the 2D planar cells, suggesting that adipogenic induction in the 3D culture condition exhibits a more adipocyte-specific gene expression pattern in 3T3-L1 preadipocytes. Real-time metabolic analysis revealed that the metabolic capacity shifted from glycolysis to mitochondrial respiration in differentiated 3T3-L1 cells in the 3D culture condition but not in those in the 2D cultured condition, suggesting that adipogenic differentiation in 3D culture induces a metabolic phenotype of well-differentiated adipocytes. Consistently, expression levels of mitochondria-encoded genes including mt-Nd6, mt-Cytb, and mt-Co1 were significantly increased by adipogenic induction of 3T3-L1 preadipocytes in 3D culture compared with those in 2D culture. Taken together, the findings suggest that induction of adipogenesis in 3D culture provides a more adipocyte-specific gene expression pattern and enhances mitochondrial respiration, resulting in more adipocyte-like cellular properties.

14.
Cells ; 12(5)2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36899895

RESUMEN

To study the molecular mechanisms responsible for inducing the spatial proliferation of malignant melanomas (MM), three-dimension (3D) spheroids were produced from several MM cell lines including SK-mel-24, MM418, A375, WM266-4, and SM2-1, and their 3D architectures and cellular metabolisms were evaluated by phase-contrast microscopy and Seahorse bio-analyzer, respectively. Several transformed horizontal configurations were observed within most of these 3D spheroids, and the degree of their deformity was increased in the order: WM266-4, SM2-1, A375, MM418, and SK-mel-24. An increased maximal respiration and a decreased glycolytic capacity were observed within the lesser deformed two MM cell lines, WM266-4 and SM2-1, as compared with the most deformed ones. Among these MM cell lines, two distinct cell lines, WM266-4 and SK-mel-24, whose 3D appearances were the closest and farthest, respectively, from being horizontally circular-shaped, were subjected to RNA sequence analyses. Bioinformatic analyses of the differentially expressed genes (DEGs) identified KRAS and SOX2 as potential master regulatory genes for inducing these diverse 3D configurations between WM266-4 and SK-mel-24. The knockdown of both factors altered the morphological and functional characteristics of the SK-mel-24 cells, and in fact, their horizontal deformity was significantly reduced. A qPCR analysis indicated that the levels of several oncogenic signaling related factors, including KRAS and SOX2, PCG1α, extracellular matrixes (ECMs), and ZO1 had fluctuated among the five MM cell lines. In addition, and quite interestingly, the dabrafenib and trametinib resistant A375 (A375DT) cells formed globe shaped 3D spheroids and showed different profiles in cellular metabolism while the mRNA expression of these molecules that were tested as above were different compared with A375 cells. These current findings suggest that 3D spheroid configuration has the potential for serving as an indicator of the pathophysiological activities associated with MM.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Línea Celular Tumoral , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Melanoma/patología
15.
J Ocul Pharmacol Ther ; 39(7): 439-448, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37352418

RESUMEN

Purpose: To assess the combined effects of omidenepag (OMD), a selective EP2 agonist, and ripasudil (Rip), an inhibitor of rho-associated coiled-coil containing protein kinases, on the human orbital adipose tissue, two-dimensional (2D) or three-dimensional (3D) cultures of human orbital fibroblasts (HOFs) were employed. Methods: Cellular metabolic functions (2D), physical (3D), lipid staining (3D), and quantitative polymerase chain reaction for adipogenesis-related genes, PPARγ and AP2, and extracellular matrix (ECM) molecules, including collagen (COL)1, 4, and 6, and fibronectin (FN) (3D) were evaluated in the presence of OMD (100 nM) and/or Rip (10 µM). Results: Real-time metabolic analyses revealed that the adipogenic differentiation (DIF+) with OMD significantly shifted an energetic state toward energetic, whereas DIF+ with Rip significantly shifted that toward quiescent. In the case of both drugs upon DIF+, the metabolic effect of OMD was predominant. DIF+ induced enlargement and stiffed 3D spheroid with increased lipid staining and mRNA expression of adipogenesis-related genes, COL4 and COL6, and decreased the expression of COL1. In the presence of OMD and/or Rip to DIF+, (1) the sizes were further increased by Rip and the stiffness was significantly decreased by OMD or Rip and (2) COL4 or AP2 expression was substantially increased by OMD or Rip, respectively. Conclusion: The results presented herein indicate that the metabolic effects of OMD and Rip exerted opposing effects and the effects of OMD toward Ap2 and ECM expressions were distinct from those of Rip, but the effects of OMD toward the physical aspects and adipogenesis of the 3D cultured HOFs were similar to the effects of Rip.


Asunto(s)
Inhibidores de Proteínas Quinasas , Sulfonamidas , Humanos , Fibroblastos , Lípidos , Quinasas Asociadas a rho
16.
Cancers (Basel) ; 15(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37345130

RESUMEN

The objective of the current study was to elucidate the clinicopathological significance and appearance of in vitro three-dimension (3D) spheroid models of oral malignant tumors that were prepared from four pathologically different squamous cell carcinoma (OSCC; low-grade; SSYP and MO-1000, intermediate-grade; LEM2) and oral adenosquamous carcinoma (OASC; high-grade; Mesimo) obtained from patients with different malignant stages. To characterize the biological significance of these cell lines themselves, two-dimensional (2D) cultured cells were subjected to cellular metabolic analysis by a Seahorse bioanalyzer alongside the measurement of the cytotoxicity of cisplatin (CDDP). The appearance of their 3D spheroids was then observed by phase contrast microscopy, and both 2D and 3D cultured cells were subject to trypsin digestion and qPCR analysis of factors related to oncogenic signaling and other related analyses. ATP-linked respiration and proton leaking were significantly different among the four cell lines, and the malignant stages of these cultures were significantly associated with increased ATP-linked respiration and decreased proton leakage. Alternatively, the appearances of these 3D spheroids were also significantly diverse among them, and their differences increased in the order of LEM2, MO-1000, SSYP, and Mesimo. Interestingly, these orders were exactly the same in that the efficacies of CDDP-induced cytotoxicity increased in the same order. qPCR analysis indicated that the levels of expression of oncogenic signaling-related factors varied among these four cell lines, and the values for fibronectin and a key regulator of mitochondrial biogenesis, PGC-1α, were prominently elevated in cultures of the worst malignant Mesimo cells. In addition, although 0.25% trypsin-induced destruction was comparable among all four 2D cultured cells, the values for the 3D spheroids were also substantially varied among these cultures. The findings reported herein indicate that cellular metabolic functions and 3D spheroid architectures may be valuable and useful indicators for estimating the pathological and drug-sensitive aspects of OSCC and OASC malignancies.

17.
Sci Rep ; 12(1): 7419, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523828

RESUMEN

The objective of the current study was to examine the roles of ROCK1 and 2 on the spatial architecture of human corneal stroma. We examined the effects of a pan-ROCK inhibitor (pan-ROCK-i), ripasudil, and a ROCK2 inhibitor (ROCK2-i), KD025 on the expression of genes that encode for ECM proteins including collagen (COL) 1, 4, 6, and fibronectin (FN), their regulators, a tissue inhibitor of metalloproteinase (TIMP) 1-4, matrix metalloproteinase (MMP) 2, 9 and 14, and ER stress-related factors of two- and three-dimensional (2D and 3D) cultures of human corneal stroma fibroblasts (HCSFs), and the physical properties of 3D HCSF spheroids. A gene expression analysis using ROCK-is indicated that KD025 (ROCK2 selective ROCK inhibitor) induced more significant changes than Rip (ripasudil, pan-ROCK inhibitor), suggesting that ROCK2 might be more extensively involved in the metabolism of ECM proteins and cell architectures of the 2D cultured HCSFs than ROCK1. In terms of the physical properties, size and stiffness of the 3D HCSFs spheroids, Rip caused a significant enlargement and this enhancement was concentration-dependent while KD025 also exerted a similar but less pronounced effect. In contrast, Rip and KD025 modulated physical stiffness differently, in that Rip caused a substantial decrease and KD025 caused an increase. Such diverse effects between Rip and KD025 were also observed for the gene expressions of ECM proteins, their regulators, and ER-stress related factors. The findings presented herein suggest that the ROCK1 and 2 influence the spatial architecture of 3D HCFS spheroids in different manners.


Asunto(s)
Sustancia Propia , Fibroblastos , Quinasas Asociadas a rho , Sustancia Propia/citología , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Quinasas Asociadas a rho/metabolismo
18.
Bioengineering (Basel) ; 9(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35877378

RESUMEN

The additive effects of an α2-adrenergic agonist, brimonidine (BRI), on the pan-ROCK inhibitor (ROCK-i), ripasudil (Rip), and the ROCK2-I, KD025, on adipogenic differentiation (DIF+) were examined using two- or three-dimension (2D or 3D) cultures of 3T3-L1 cells. The following analyses were carried out: (1) lipid staining (2D and 3D), (2) real-time measurements of cellular metabolism (2D), (3) mRNA expression of DIF+ related genes and extracellular matrix molecules (ECMs) including collagen (Col)-1, -4, and -6, and fibronectin (Fn), and (4) the sizes and physical properties of the 3D spheroids. The findings indicate that DIF+ induced (1) a substantial enhancement in lipid staining and enhanced expression of the Pparγ and Fabp4 genes, (2) significantly larger and softer 3D spheroids, and (3) down-regulation of Col1 and Fn and up-regulation of Col4 and Col6 genes. Treatment with Rip alone caused a significant enhancement in adipogenesis of both the 2D and 3D cultured 3T3-L1 cells and in the physical properties of the 3D spheroids; these effects were substantially inhibited by BRI, and the effects induced by BRI or KD025 were not insignificant. These collective findings indicate that the addition of BRI inhibited the Rip-induced enhancement of DIF+ in 3T3-L1 cells, presumably by modulating ROCK1 signaling.

19.
Cells ; 11(2)2022 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-35053416

RESUMEN

To elucidate the currently unknown mechanisms responsible for the diverse biological aspects between two-dimensional (2D) and three-dimensional (3D) cultured 3T3-L1 preadipocytes, RNA-sequencing analyses were performed. During a 7-day culture period, 2D- and 3D-cultured 3T3-L1 cells were subjected to lipid staining by BODIPY, qPCR for adipogenesis related genes, including peroxisome proliferator-activated receptor γ (Pparγ), CCAAT/enhancer-binding protein alpha (Cebpa), Ap2 (fatty acid-binding protein 4; Fabp4), leptin, and AdipoQ (adiponectin), and RNA-sequencing analysis. Differentially expressed genes (DEGs) were detected by next-generation RNA sequencing (RNA-seq) and validated by a quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Bioinformatic analyses were performed on DEGs using a Gene Ontology (GO) enrichment analysis and an Ingenuity Pathway Analysis (IPA). Significant spontaneous adipogenesis was observed in 3D 3T3-L1 spheroids, but not in 2D-cultured cells. The mRNA expression of Pparγ, Cebpa, and Ap2 among the five genes tested were significantly higher in 3D spheroids than in 2D-cultured cells, thus providing support for this conclusion. RNA analysis demonstrated that a total of 826 upregulated and 725 downregulated genes were identified as DEGs. GO enrichment analysis and IPA found 50 possible upstream regulators, and among these, 6 regulators-transforming growth factor ß1 (TGFß1), signal transducer and activator of transcription 3 (STAT3), interleukin 6 (IL6), angiotensinogen (AGT), FOS, and MYC-were, in fact, significantly upregulated. Further analyses of these regulators by causal networks of the top 14 predicted diseases and functions networks (IPA network score indicated more than 30), suggesting that STAT3 was the most critical upstream regulator. The findings presented herein suggest that STAT3 has a critical role in regulating the unique biological properties of 3D spheroids that are produced from 3T3-L1 preadipocytes.


Asunto(s)
Adipocitos/metabolismo , Factor de Transcripción STAT3/metabolismo , Esferoides Celulares/metabolismo , Células 3T3-L1 , Adipogénesis , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética
20.
J Clin Med ; 11(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35329980

RESUMEN

To compare the drug-induced efficacies between omidenepag (OMD), an EP2 agonist, and prostaglandin F2α (PGF2α) on glaucomatous trabecular meshwork (TM) cells, two- and three-dimensional (2D and 3D) cultures of TGF-ß2-modulated human trabecular meshwork (HTM) cells were used. The following analyses were performed: (1) transendothelial electrical resistance (TEER) and FITC-dextran permeability measurements (2D), (2) the size and stiffness of the 3D spheroids, and (3) the expression (both 2D and 3D) by several extracellular matrix (ECM) molecules including collagen (COL) 1, 4 and 6, and fibronectin (FN), and α smooth muscle actin (αSMA), tight junction (TJ)-related molecules, claudin11 (Cldn11) and ZO1, the tissue inhibitor of metalloproteinase (TIMP) 1-4, matrix metalloproteinase (MMP) 2, 9 and 14, connective tissue growth factor (CTGF), and several endoplasmic reticulum (ER) stress-related factors. TGF-ß2 significantly increased the TEER values and decreased FITC-dextran permeability, respectively, in the 2D HTM monolayers, and induced the formation of downsized and stiffer 3D HTM spheroids. TGF-ß2-induced changes in TEER levels and FITC-dextran permeability were remarkably inhibited by PGF2α. PGF2α induced increases in the sizes and stiffness of the TGF-ß2-treated 3D spheroids, but OMD enhanced only spheroid size. Upon exposure to TGF-ß2, the expression of most of the molecules that were evaluated were significantly up-regulated, except some of ER stress-related factors were down-regulated. TJ-related molecules or ER stress-related factors were significantly up-regulated (2D) or down-regulated (3D), and down-regulated (2D) by PGF2α and OMD, while both drugs altered the expression of some of the other genes in the 3D spheroids in a different manner. The findings presented herein suggest that PGF2α and OMD differently modulate the permeability of the TGFß2-modulated 2D monolayers and the physical properties of the 3D HTM spheroids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA