Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 538(7623): 72-74, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27602514

RESUMEN

The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula-the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization. Many gaseous organic molecules, however, have been observed; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov-Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites' parent bodies. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.

2.
Nature ; 518(7538): 216-8, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25624103

RESUMEN

Comets are composed of dust and frozen gases. The ices are mixed with the refractory material either as an icy conglomerate, or as an aggregate of pre-solar grains (grains that existed prior to the formation of the Solar System), mantled by an ice layer. The presence of water-ice grains in periodic comets is now well established. Modelling of infrared spectra obtained about ten kilometres from the nucleus of comet Hartley 2 suggests that larger dust particles are being physically decoupled from fine-grained water-ice particles that may be aggregates, which supports the icy-conglomerate model. It is known that comets build up crusts of dust that are subsequently shed as they approach perihelion. Micrometre-sized interplanetary dust particles collected in the Earth's stratosphere and certain micrometeorites are assumed to be of cometary origin. Here we report that grains collected from the Jupiter-family comet 67P/Churyumov-Gerasimenko come from a dusty crust that quenches the material outflow activity at the comet surface. The larger grains (exceeding 50 micrometres across) are fluffy (with porosity over 50 per cent), and many shattered when collected on the target plate, suggesting that they are agglomerates of entities in the size range of interplanetary dust particles. Their surfaces are generally rich in sodium, which explains the high sodium abundance in cometary meteoroids. The particles collected to date therefore probably represent parent material of interplanetary dust particles. This argues against comet dust being composed of a silicate core mantled by organic refractory material and then by a mixture of water-dominated ices. At its previous recurrence (orbital period 6.5 years), the comet's dust production doubled when it was between 2.7 and 2.5 astronomical units from the Sun, indicating that this was when the nucleus shed its mantle. Once the mantle is shed, unprocessed material starts to supply the developing coma, radically changing its dust component, which then also contains icy grains, as detected during encounters with other comets closer to the Sun.

3.
J Chemom ; 34(4): e3218, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32355406

RESUMEN

The instrument COSIMA (COmetary Secondary Ion Mass Analyzer) onboard of the European Space Agency mission Rosetta collected and analyzed dust particles in the neighborhood of comet 67P/Churyumov-Gerasimenko. The chemical composition of the particle surfaces was characterized by time-of-flight secondary ion mass spectrometry. A set of 2213 spectra has been selected, and relative abundances for CH-containing positive ions as well as positive elemental ions define a set of multivariate data with nine variables. Evaluation by complementary chemometric techniques shows different compositions of sample groups collected during two periods of the mission. The first period was August to November 2014 (far from the Sun); the second period was January 2015 to February 2016 (nearer to the Sun). The applied data evaluation methods consider the compositional nature of the mass spectral data and comprise robust principal component analysis as well as classification with discriminant partial least squares regression, k-nearest neighbor search, and random forest decision trees. The results indicate a high importance of the relative abundances of the secondary ions C+ and Fe+ for the group separation and demonstrate an enhanced content of carbon-containing substances in samples collected in the period with smaller distances to the Sun.

4.
Philos Trans A Math Phys Eng Sci ; 375(2097)2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28554975

RESUMEN

The in situ cometary dust particle instrument COSIMA (COmetary Secondary Ion Mass Analyser) onboard ESA's Rosetta mission has collected about 31 000 dust particles in the inner coma of comet 67P/Churyumov-Gerasimenko since August 2014. The particles are identified by optical microscope imaging and analysed by time-of-flight secondary ion mass spectrometry. After dust particle collection by low speed impact on metal targets, the collected particle morphology points towards four families of cometary dust particles. COSIMA is an in situ laboratory that operates remotely controlled next to the comet nucleus. The particles can be further manipulated within the instrument by mechanical and electrostatic means after their collection by impact. The particles are stored above 0°C in the instrument and the experiments are carried out on the refractory, ice-free matter of the captured cometary dust particles. An interesting particle morphology class, the compact particles, is not fragmented on impact. One of these particles was mechanically pressed and thereby crushed into large fragments. The particles are good electrical insulators and transform into rubble pile agglomerates by the application of an energetic indium ion beam during the secondary ion mass spectrometry analysis.This article is part of the themed issue 'Cometary science after Rosetta'.

5.
Science ; 349(6247): aaa5102, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25873744

RESUMEN

Knowledge of the magnetization of planetary bodies constrains their origin and evolution, as well as the conditions in the solar nebular at that time. On the basis of magnetic field measurements during the descent and subsequent multiple touchdown of the Rosetta lander Philae on the comet 67P/Churyumov-Gerasimenko (67P), we show that no global magnetic field was detected within the limitations of analysis. The Rosetta Magnetometer and Plasma Monitor (ROMAP) suite of sensors measured an upper magnetic field magnitude of less than 2 nanotesla at the cometary surface at multiple locations, with the upper specific magnetic moment being <3.1 × 10(-5) ampere-square meters per kilogram for meter-size homogeneous magnetized boulders. The maximum dipole moment of 67P is 1.6 × 10(8) ampere-square meters. We conclude that on the meter scale, magnetic alignment in the preplanetary nebula is of minor importance.

6.
Anal Chim Acta ; 705(1-2): 48-55, 2011 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-21962347

RESUMEN

Random projection (RP) is a simple and fast linear method for dimensionality reduction of high-dimensional multivariate data, independent from the data. The method is briefly described and a new memory-saving algorithm is presented for the generation of random projection vectors. Application of RP to data from scanning experiments with a time-of-flight secondary ion mass spectrometer (TOF-SIMS) showed that data reduced by RP have a satisfying discriminant property for separating target material and minerals without using any knowledge about the composition of the sample. A selection method--based on low dimensional RP data--is described and successfully tested for automatic recognition of characteristic, diverse locations of a sample surface. RP is demonstrated as an unbiased, powerful method, especially for large data sets, severe hardware restrictions (such as in space experiments) or the need for fast data evaluation of hyperspectral data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA