Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Thorax ; 79(6): 524-537, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38286613

RESUMEN

INTRODUCTION: Environmental pollutants injure the mucociliary elevator, thereby provoking disease progression in chronic obstructive pulmonary disease (COPD). Epithelial resilience mechanisms to environmental nanoparticles in health and disease are poorly characterised. METHODS: We delineated the impact of prevalent pollutants such as carbon and zinc oxide nanoparticles, on cellular function and progeny in primary human bronchial epithelial cells (pHBECs) from end-stage COPD (COPD-IV, n=4), early disease (COPD-II, n=3) and pulmonary healthy individuals (n=4). After nanoparticle exposure of pHBECs at air-liquid interface, cell cultures were characterised by functional assays, transcriptome and protein analysis, complemented by single-cell analysis in serial samples of pHBEC cultures focusing on basal cell differentiation. RESULTS: COPD-IV was characterised by a prosecretory phenotype (twofold increase in MUC5AC+) at the expense of the multiciliated epithelium (threefold reduction in Ac-Tub+), resulting in an increased resilience towards particle-induced cell damage (fivefold reduction in transepithelial electrical resistance), as exemplified by environmentally abundant doses of zinc oxide nanoparticles. Exposure of COPD-II cultures to cigarette smoke extract provoked the COPD-IV characteristic, prosecretory phenotype. Time-resolved single-cell transcriptomics revealed an underlying COPD-IV unique basal cell state characterised by a twofold increase in KRT5+ (P=0.018) and LAMB3+ (P=0.050) expression, as well as a significant activation of Wnt-specific (P=0.014) and Notch-specific (P=0.021) genes, especially in precursors of suprabasal and secretory cells. CONCLUSION: We identified COPD stage-specific gene alterations in basal cells that affect the cellular composition of the bronchial elevator and may control disease-specific epithelial resilience mechanisms in response to environmental nanoparticles. The identified phenomena likely inform treatment and prevention strategies.


Asunto(s)
Células Epiteliales , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/etiología , Células Epiteliales/metabolismo , Masculino , Persona de Mediana Edad , Células Cultivadas , Bronquios/patología , Femenino , Anciano , Óxido de Zinc , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Cilios , Nanopartículas , Diferenciación Celular
2.
Cytometry A ; 105(7): 521-535, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38668123

RESUMEN

Flow cytometry and fluorescence-activated cell sorting are widely used to study endothelial cells, for which the generation of viable single-cell suspensions is an essential first step. Two enzymatic approaches, collagenase A and dispase, are widely employed for endothelial cell isolation. In this study, the utility of both enzymatic approaches, alone and in combination, for endothelial cell isolation from juvenile and adult mouse lungs was assessed, considering the number, viability, and subtype composition of recovered endothelial cell pools. Collagenase A yielded an 8-12-fold superior recovery of viable endothelial cells from lung tissue from developing mouse pups, compared to dispase, although dispase proved superior in efficiency for epithelial cell recovery. Single-cell RNA-Seq revealed that the collagenase A approach yielded a diverse endothelial cell subtype composition of recovered endothelial cell pools, with broad representation of arterial, capillary, venous, and lymphatic lung endothelial cells; while the dispase approach yielded a recovered endothelial cell pool highly enriched for one subset of general capillary endothelial cells, but poor representation of other endothelial cells subtypes. These data indicate that tissue dissociation markedly influences the recovery of endothelial cells, and the endothelial subtype composition of recovered endothelial cell pools, as assessed by single-cell RNA-Seq.


Asunto(s)
Separación Celular , Células Endoteliales , Citometría de Flujo , Pulmón , Animales , Ratones , Células Endoteliales/citología , Células Endoteliales/metabolismo , Pulmón/citología , Separación Celular/métodos , Citometría de Flujo/métodos , Colagenasas/metabolismo , Análisis de la Célula Individual/métodos , Ratones Endogámicos C57BL , Endopeptidasas
3.
BMC Pediatr ; 24(1): 249, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605404

RESUMEN

BACKGROUND: Long-term survival after premature birth is significantly determined by development of morbidities, primarily affecting the cardio-respiratory or central nervous system. Existing studies are limited to pairwise morbidity associations, thereby lacking a holistic understanding of morbidity co-occurrence and respective risk profiles. METHODS: Our study, for the first time, aimed at delineating and characterizing morbidity profiles at near-term age and investigated the most prevalent morbidities in preterm infants: bronchopulmonary dysplasia (BPD), pulmonary hypertension (PH), mild cardiac defects, perinatal brain pathology and retinopathy of prematurity (ROP). For analysis, we employed two independent, prospective cohorts, comprising a total of 530 very preterm infants: AIRR ("Attention to Infants at Respiratory Risks") and NEuroSIS ("Neonatal European Study of Inhaled Steroids"). Using a data-driven strategy, we successfully characterized morbidity profiles of preterm infants in a stepwise approach and (1) quantified pairwise morbidity correlations, (2) assessed the discriminatory power of BPD (complemented by imaging-based structural and functional lung phenotyping) in relation to these morbidities, (3) investigated collective co-occurrence patterns, and (4) identified infant subgroups who share similar morbidity profiles using machine learning techniques. RESULTS: First, we showed that, in line with pathophysiologic understanding, BPD and ROP have the highest pairwise correlation, followed by BPD and PH as well as BPD and mild cardiac defects. Second, we revealed that BPD exhibits only limited capacity in discriminating morbidity occurrence, despite its prevalence and clinical indication as a driver of comorbidities. Further, we demonstrated that structural and functional lung phenotyping did not exhibit higher association with morbidity severity than BPD. Lastly, we identified patient clusters that share similar morbidity patterns using machine learning in AIRR (n=6 clusters) and NEuroSIS (n=8 clusters). CONCLUSIONS: By capturing correlations as well as more complex morbidity relations, we provided a comprehensive characterization of morbidity profiles at discharge, linked to shared disease pathophysiology. Future studies could benefit from identifying risk profiles to thereby develop personalized monitoring strategies. TRIAL REGISTRATION: AIRR: DRKS.de, DRKS00004600, 28/01/2013. NEuroSIS: ClinicalTrials.gov, NCT01035190, 18/12/2009.


Asunto(s)
Displasia Broncopulmonar , Enfermedades del Prematuro , Retinopatía de la Prematuridad , Femenino , Humanos , Recién Nacido , Embarazo , Displasia Broncopulmonar/complicaciones , Edad Gestacional , Recien Nacido Prematuro , Enfermedades del Prematuro/epidemiología , Recién Nacido de muy Bajo Peso , Morbilidad , Estudios Prospectivos , Retinopatía de la Prematuridad/epidemiología , Pueblo Europeo
4.
Cell Death Discov ; 10(1): 311, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961074

RESUMEN

Oxygen toxicity constitutes a key contributor to bronchopulmonary dysplasia (BPD). Critical step in the pathogenesis of BPD is the inflammatory response in the immature lung with the release of pro-inflammatory cytokines and the influx of innate immune cells. Identification of efficient therapies to alleviate the inflammatory response remains an unmet research priority. First, we studied macrophage and neutrophil profiles in tracheal aspirates of n = 103 preterm infants <29 weeks´ gestation requiring mechanical ventilation. While no differences were present at birth, a higher fraction of macrophages, the predominance of the CD14+CD16+ subtype on day 5 of life was associated with moderate/severe BPD. Newborn CCL-2-/- mice insufficient in pulmonary macrophage recruitment had a reduced influx of neutrophils, lower apoptosis induction in the pulmonary tissue and better-preserved lung morphometry with higher counts of type II cells, mesenchymal stem cells and vascular endothelial cells when exposed to hyperoxia for 7 days. To study the benefit of a targeted approach to prevent the pulmonary influx of macrophages, wildtype mice were repeatedly treated with CCL-2 blocking antibodies while exposed to hyperoxia for 7 days. Congruent with the results in CCL-2-/- animals, the therapeutic intervention reduced the pulmonary inflammatory response, attenuated cell death in the lung tissue and better-preserved lung morphometry. Overall, our preclinical and clinical datasets document the predominant role of macrophage recruitment to the pathogenesis of BPD and establish the abrogation of CCL-2 function as novel approach to protect the immature lung from hyperoxic injury.

5.
Pulm Circ ; 13(4): e12320, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38144949

RESUMEN

Pulmonary hypertension (PH) is the most severe complication in preterm infants with bronchopulmonary dysplasia (BPD) and associated with significant mortality. Diagnostic and treatment strategies, however, still lack standardization. By the use of a survey study (PH in BPD), we assessed clinical practice (diagnosis, treatment, follow-up) in preterm infants with early postnatal persistent pulmonary hypertension of the newborn (PPHN) as well as at risk for or with established BPD-associated PH between 06/2018 and 10/2020 in two-thirds of all German perinatal centers with >70 very low birthweight infants/year including their cardiology departments and outpatient units. Data were analyzed descriptively by measures of locations and distributional shares. In routine postnatal care, clinical presentation and echocardiography were reported as the main diagnostic modalities to screen for PPHN in preterm infants, whereas biomarkers brain natriuretic peptide/N-terminal pro b-type natriuretic peptide were infrequently used. For PPHN treatment, inhaled nitric oxide was used in varying frequency. The majority of participants agreed to prescribe diuretics and steroids (systemic/inhaled) for infants at risk for or with established BPD-associated PH and strongly agreed on recommending respiratory syncytial virus immunization and the use of home monitoring upon discharge. Reported oxygen saturation targets, however, varied in these patients in in- and outpatient care. The survey reveals shared practices in diagnostic and therapeutic strategies for preterms with PPHN and BPD-associated PH in Germany. Future studies are needed to agree on detailed echo parameters and biomarkers to diagnose and monitor disease next to a much-needed agreement on the use of pulmonary vasodilators, steroids, and diuretics as well as target oxygen saturation levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA