Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 166(3): 596-608, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27453466

RESUMEN

Influenza virus remains a threat because of its ability to evade vaccine-induced immune responses due to antigenic drift. Here, we describe the isolation, evolution, and structure of a broad-spectrum human monoclonal antibody (mAb), MEDI8852, effectively reacting with all influenza A hemagglutinin (HA) subtypes. MEDI8852 uses the heavy-chain VH6-1 gene and has higher potency and breadth when compared to other anti-stem antibodies. MEDI8852 is effective in mice and ferrets with a therapeutic window superior to that of oseltamivir. Crystallographic analysis of Fab alone or in complex with H5 or H7 HA proteins reveals that MEDI8852 binds through a coordinated movement of CDRs to a highly conserved epitope encompassing a hydrophobic groove in the fusion domain and a large portion of the fusion peptide, distinguishing it from other structurally characterized cross-reactive antibodies. The unprecedented breadth and potency of neutralization by MEDI8852 support its development as immunotherapy for influenza virus-infected humans.


Asunto(s)
Alphainfluenzavirus/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/química , Anticuerpos Antivirales/aislamiento & purificación , Sitios de Unión de Anticuerpos , Cristalografía por Rayos X , Epítopos/inmunología , Hurones , Humanos , Vacunas contra la Influenza , Ratones , Infecciones por Orthomyxoviridae/prevención & control , Conformación Proteica
2.
J Comput Chem ; 37(13): 1206-13, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26813584

RESUMEN

Reduction and oxidation (redox) reactions are widely used for removal of nitrocompounds from contaminated soil and water. Structures and redox properties for complexes of nitrocompounds, such as 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitroanisole (DNAN), and 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO), with common inorganic ions (Na(+) , Cl(-) , NO3-) were investigated at the SMD(Pauling)/PCM(Pauling)/MPWB1K/TZVP level of theory. Atoms in molecules (AIM) theory was applied to analyze the topological properties of the bond critical points involved in the interactions between the nitrocompounds and the ions. Topological analyses show that intermolecular interactions of the types O(N)…Na(+) , C-H…Cl(-) ( ONO2-), and C…Cl(-) ( ONO2-) may be discussed as noncovalent closed-shell interactions, while N-H···Cl(-) ( ONO2-) hydrogen bonds are partially covalent in nature. Complexation causes significant decrease of redox activity of the nitrocompounds. Analysis of the reduction potentials of the complexes obtained through application of the Pourbaix diagram of an iron/water system revealed that sodium complexes of NTO might be reduced by metallic iron. © 2016 Wiley Periodicals, Inc.

3.
Environ Sci Technol ; 50(18): 10039-46, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27523798

RESUMEN

HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), an energetic material used in military applications, may be released to the environment during manufacturing, transportation, storage, training, and disposal. A detailed investigation of a possible mechanism of alkaline hydrolysis, as one of the most promising methods for HMX remediation, was performed by computational study at PCM(Pauling)/M06-2X/6-311++G(d,p) level. Obtained results suggest that HMX hydrolysis at pH 10 represents a highly exothermic multistep process involving initial deprotonation and nitrite elimination, hydroxide attachment accompanied by cycle cleavage, and further decomposition of cycle-opened intermediate to the products caused by a series of C-N bond ruptures, hydroxide attachments, and proton transfers. Computationally predicted products of HMX hydrolysis such as nitrite, 4-nitro-2,4-diazabutanal, formaldehyde, nitrous oxide, formate, and ammonia correspond to experimentally observed species. Based on computed reaction pathways for HMX decomposition by alkaline hydrolysis, the kinetics of the entire process was modeled. Very low efficiency of this reaction at pH 10 was observed. Computations predict significant increases (orders of magnitude) of the hydrolysis rate for hydrolysis reactions undertaken at pH 11, 12, and 13.


Asunto(s)
Simulación por Computador , Compuestos Heterocíclicos con 1 Anillo , Hidrólisis , Cinética , Nitritos
4.
J Comput Chem ; 36(14): 1029-35, 2015 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-25736204

RESUMEN

The reduction and oxidation properties of four nitrocompounds (trinitrotoluene [TNT], 2,4-dinitrotoluene, 2,4-dinitroanisole, and 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one [NTO]) dissolved in water as compared with the same properties for compounds adsorbed on a silica surface were studied. To consider the influence of adsorption, cluster models were developed at the M05/tzvp level. A hydroxylated silica (001) surface was chosen to represent a key component of soil. The PCM(Pauling) and SMD solvation models were used to model water bulk influence. The following properties were analyzed: electron affinity, ionization potential, reduction Gibbs free energy, oxidation Gibbs free energy, and reduction and oxidation potentials. It was found that adsorption and solvation decrease gas phase electron affinity, ionization potential, and Gibbs free energy of reduction and oxidation, and thus, promote redox transformation of nitrocompounds. However, in case of solvation, the changes are more significant than for adsorption. This means that nitrocompounds dissolved in water are easier to transform by reduction or oxidation than adsorbed ones. Among the considered compounds, TNT was found to be the most reactive in an electron attachment process and the least reactive for an electron detachment transformation. During ionization, a deprotonation of adsorbed NTO was found to occur.


Asunto(s)
Simulación por Computador , Modelos Químicos , Compuestos de Nitrógeno/química , Dióxido de Silicio/química , Adsorción , Contaminantes Ambientales/química , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Agua/química
5.
J Virol ; 88(12): 6743-50, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24696468

RESUMEN

UNLABELLED: Most neutralizing antibodies elicited during influenza virus infection or vaccination target immunodominant, variable epitopes on the globular head region of hemagglutinin (HA), which leads to narrow strain protection. In this report, we describe the properties of a unique anti-HA monoclonal antibody (MAb), D1-8, that was derived from human B cells and exhibits potent, broad neutralizing activity across antigenically diverse influenza H3 subtype viruses. Based on selection of escape variants, we show that D1-8 targets a novel epitope on the globular head region of the influenza virus HA protein. The HA residues implicated in D1-8 binding are highly conserved among H3N2 viruses and are located proximal to antigenic site D. We demonstrate that the potent in vitro antiviral activity of D1-8 translates into protective activity in mouse models of influenza virus infection. Furthermore, D1-8 exhibits superior therapeutic survival benefit in influenza virus-infected mice compared to the neuraminidase inhibitor oseltamivir when treatment is started late in infection. The present study suggests the potential application of this monoclonal antibody for the therapeutic treatment of H3N2 influenza virus infection. IMPORTANCE: Recently, a few globular head-targeting MAbs have been discovered that exhibit activity against different subtypes of influenza subtypes, such as H1; however, none of the previously described MAbs showed broadly neutralizing activity against diverse H3 viruses. In this report, we describe a human MAb, D1-8, that exhibits potent, broadly neutralizing activity against antigenically diverse H3 subtype viruses. The genotypic analysis of escape mutants revealed a unique putative epitope region in the globular head of H3 HA that is comprised of highly conserved residues and is distinct from the receptor binding site. Furthermore, we demonstrate that D1-8 exhibits superior therapeutic efficacy in influenza virus-infected mice compared to the neuraminidase inhibitor oseltamivir when treatment is started late in infection. In addition to describing a novel anti-globular head of H3 HA MAb with potent broadly neutralizing activity, our report suggests the potential of D1-8 for therapeutic treatment of seasonal influenza virus H3 infection.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/virología , Secuencias de Aminoácidos , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H3N2 del Virus de la Influenza A/química , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza A/química , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Virus de la Influenza A/inmunología , Gripe Humana/tratamiento farmacológico , Gripe Humana/inmunología , Ratones , Ratones Endogámicos BALB C , Pruebas de Neutralización
6.
Nanotechnology ; 26(22): 225301, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25961886

RESUMEN

We report the design, fabrication, and characterization of planar arrays of externally-fed silicon electrospinning emitters for high-throughput generation of polymer nanofibers. Arrays with as many as 225 emitters and with emitter density as large as 100 emitters cm(-2) were characterized using a solution of dissolved PEO in water and ethanol. Devices with emitter density as high as 25 emitters cm(-2) deposit uniform imprints comprising fibers with diameters on the order of a few hundred nanometers. Mass flux rates as high as 417 g hr(-1) m(-2) were measured, i.e., four times the reported production rate of the leading commercial free-surface electrospinning sources. Throughput increases with increasing array size at constant emitter density, suggesting the design can be scaled up with no loss of productivity. Devices with emitter density equal to 100 emitters cm(-2) fail to generate fibers but uniformly generate electrosprayed droplets. For the arrays tested, the largest measured mass flux resulted from arrays with larger emitter separation operating at larger bias voltages, indicating the strong influence of electrical field enhancement on the performance of the devices. Incorporation of a ground electrode surrounding the array tips helps equalize the emitter field enhancement across the array as well as control the spread of the imprints over larger distances.

7.
J Phys Chem A ; 119(29): 8139-45, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26098296

RESUMEN

A cluster approximation was applied at the M05/tzvp level to model an adsorption of 5-amino-3-nitro-1H-1,2,4-triazole (ANTA) on the (001) surface of α-quartz. Structures of the obtained ANTA-silica complexes confirm a nearly parallel orientation of the nitro compound toward the surface. The atoms in molecules (AIM) method was applied to analyze binding between ANTA and the silica surface. Attachment or loss of an electron was found to lead to a significant deviation from coplanarity in the complexes and to a strengthening of a hydrogen bonding. Redox properties of the adsorbed ANTA were compared with those of gas-phase and hydrated species by calculation of the ionization potential, electron affinity, oxidation and reduction Gibbs free energies, and oxidation and reduction potentials. It was shown that the adsorbed ANTA has a lower ability to undergo redox transformations as compared to that of the hydrated one.

8.
J Comput Chem ; 35(27): 1977-85, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25124797

RESUMEN

This article reports the results of the theoretical investigation of adsorption of 2,4,6-trinitrotoluene (TNT) on Al-hydroxylated (0001) surface of (4 × 4) α-alumina (α-Al2O3) using plane-wave Density Functional Theory. Sixteen water molecules were used to hydroxylate the alumina surface. The Perdew-Burke-Ernzerhof functional and the recently developed van der Waals functional (vdW-DF2) were used. The interaction of electron with core was accounted using the Vanderbilt ultrasoft pseudopotentials. It was found that hydroxylation has significant influence on the geometry of alumina and such changes are prominent up to few layers from the surface. Particularly, due to the Al-hydroxylation the oxygen layers are decomposed into sublayers and such partitioning becomes progressively weaker for interior layers. Moreover, the nature of TNT adsorption interaction is changed from covalent type on the pristine alumina surface to hydrogen-bonding interaction on the Al-hydroxylated alumina surface. TNT in parallel orientation forms several hydrogen bonds compared to that in the perpendicular orientation with hydroxyl groups of the Al-hydroxylated alumina surface. Therefore, the parallel orientation will be present in the adsorption of TNT on Al-hydroxylated (0001) surface of α-alumina. Further, the vdW-DF2 van der Waals functional was found to be most suitable and should be used for such surface adsorption investigation.

9.
Environ Sci Technol ; 48(17): 10465-74, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25083594

RESUMEN

Combined experimental and computational techniques were used to analyze multistep chemical reactions in the alkaline hydrolysis of three nitroaromatic compounds: 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), and 2,4-dinitroanisole (DNAN). The study reveals common features and differences in the kinetic behavior of these compounds. The analysis of the predicted pathways includes modeling of the reactions, along with simulation of UV-vis spectra, experimental monitoring of reactions using LC/MS techniques, development of the kinetic model by designing and solving the system of differential equations, and obtaining computationally predicted kinetics for decay and accumulation of reactants and products. Obtained results suggest that DNT and DNAN are more resistant to alkaline hydrolysis than TNT. The direct substitution of a nitro group by a hydroxide represents the most favorable pathway for all considered compounds. The formation of Meisenheimer complexes leads to the kinetic first-step intermediates in the hydrolysis of TNT. Janovsky complexes can also be formed during hydrolysis of TNT and DNT but in small quantities. Methyl group abstraction is one of the suggested pathways of DNAN transformation during alkaline hydrolysis.


Asunto(s)
Anisoles/química , Dinitrobencenos/química , Hidróxido de Sodio/química , Trinitrotolueno/química , Color , Hidrólisis , Cinética , Espectrofotometría Ultravioleta , Temperatura , Factores de Tiempo
10.
J Comput Chem ; 34(13): 1094-100, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23335274

RESUMEN

A number of density functionals was utilized to predict gas-phase adiabatic ionization potentials (IPs) for nitrogen-rich heterocyclic compounds. Various solvation models were applied to the calculation of difference in free energies of solvation of oxidized and reduced forms of heterocyclic compounds in acetonitrile (AN) for correct reproduction of their standard oxidation potentials. We developed generally applicable protocols that could successfully predict the gas-phase adiabatic ionization potentials of nitrogen-rich heterocyclic compounds and their standard oxidation potentials in AN. This approach is supported by a MPW1K/6-31+G(d) level of theory which uses SMD(UA0) approximation for estimation of solvation energy of neutral molecules and PCM(UA0) model for ionized ones. The mean absolute derivation (MAD) and root mean square error (RMSE) of the current theoretical models for IP are equal to 0.22 V and 0.26, respectively, and for oxidation potentials MAD = 0.13 V and RMSE = 0.17.


Asunto(s)
Electrones , Compuestos Heterocíclicos/química , Nitrocompuestos/química , Teoría Cuántica , Acetonitrilos/química , Estructura Molecular , Oxidación-Reducción , Solventes/química
11.
Chem Soc Rev ; 41(16): 5502-25, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22743683

RESUMEN

Life is believed to have originated on Earth ∼4.4-3.5 Ga ago, via processes in which organic compounds supplied by the environment self-organized, in some geochemical environmental niches, into systems capable of replication with hereditary mutation. This process is generally supposed to have occurred in an aqueous environment and, likely, in the presence of minerals. Mineral surfaces present rich opportunities for heterogeneous catalysis and concentration which may have significantly altered and directed the process of prebiotic organic complexification leading to life. We review here general concepts in prebiotic mineral-organic interfacial processes, as well as recent advances in the study of mineral surface-organic interactions of potential relevance to understanding the origin of life.


Asunto(s)
Minerales/química , Compuestos Orgánicos/química , Origen de la Vida , Aminoácidos/química , Catálisis , Planeta Tierra , Lípidos/química , Modelos Moleculares , Ácidos Nucleicos/química , Péptidos/química , Agua/química
12.
Proteins ; 80(12): 2728-41, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22865652

RESUMEN

Reduction, catalyzed by the bacterial nitroreductases, is the quintessential first step in the biodegradation of a variety of nitroaromatic compounds from contaminated waters and soil. The Enterobacter cloacae nitroreductase (EcNR) enzyme is considered as a prospective biotechnological tool for bioremediation of hazardous nitroaromatic compounds. Using diverse computational methods, we obtain insights into the structural basis of activity and mechanism of its function. We have performed molecular dynamics simulation of EcNR in three different states (free EcNR in oxidized form, fully reduced EcNR with benzoate inhibitor and fully reduced EcNR with nitrobenzene) in explicit solvent and with full electrostatics. Principal Component Analysis (PCA) of the variance-covariance matrix showed that the complexed nitroreductase becomes more flexible overall upon complexation, particularly helix H6, in the vicinity of the binding site. A multiple sequence alignment was also constructed in order to examine positional constraints on substitution in EcNR. Five regions which are highly conserved within the flavin mononucleotide (FMN) binding site were identified. Obtained results and their implications for EcNR functioning are discussed, and new plausible mechanism has been proposed.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Enterobacter cloacae/enzimología , Nitrorreductasas/química , Nitrorreductasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Biología Computacional/métodos , Mononucleótido de Flavina/química , Mononucleótido de Flavina/metabolismo , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Nitrobencenos/química , Nitrobencenos/metabolismo , Análisis de Componente Principal , Alineación de Secuencia , Electricidad Estática , Relación Estructura-Actividad
13.
J Phys Chem A ; 116(29): 7746-55, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22742429

RESUMEN

Density functional theory (DFT) investigation has been undertaken to explore alkaline hydrolysis mechanisms for nitrocellulose in the gas phase and in bulk water solution by considering the dimer and trimer forms of 2,3,6-trinitro-ß-d-glucopyranose in the (4)C(1) chair conformation and by comparing the computed results with the monomer. Ground and transition state geometries were optimized using the B3LYP functional and the 6-311G(d,p) basis set both in the gas phase and in the bulk water solution. The nature of respective potential energy surfaces was ascertained through harmonic vibrational frequency analysis. Intrinsic reaction coordinate calculations were performed to ensure that computed transition state connects to the respective reactants and products. Single-point energy calculations were also performed using the recently developed M06-2X functional and the cc-pVTZ basis set using the B3LYP/6-311G(d,p) optimized geometries. Effect of the bulk water solution was modeled using the polarizable continuum model (PCM) approach. It has been suggested that the dimeric form of 2,3,6-trinitro-ß-d-glucopyranose can be considered as the smallest model to study the nitrocellulose system regarding the alkaline hydrolysis reaction. It was predicted that the peeling-off reaction will start after the denitration of various sites, which will follow a C3 → C6 → C2 denitration route. Further, it was determined that the peeling-off reaction will be more preferred than the ring cleavage through the ring CO bond.

14.
J Phys Chem A ; 116(20): 4909-21, 2012 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-22540769

RESUMEN

Comprehensive computational investigations of detailed alkaline hydrolysis reaction pathways of the α-anomeric form of nitrocellulose monomer (2,3,6-trinitro-α-D-glucopyranose) in the (4)C(1) chair conformation within the S(N)2 framework in the gas phase and in bulk water solution are reported. Geometries of reactant complexes, transition states, intermediates, and completely denitrated product were optimized at the density functional theory (DFT) level using the B3LYP functional and the 6-311G(d,p) basis set both in the gas phase and in the bulk water solution. The effect of bulk water was modeled using the polarizable continuum model (PCM) approach. The nature of the potential energy surface of the local minima and transition states was ascertained through vibrational frequency analysis. Intrinsic reaction coordinate (IRC) calculations were also performed to validate the computed transition state structures. Effect of electron correlation on computed energies was considered through a single point energy calculation at the MP2 level using the cc-pVTZ basis set. It was revealed that the presence of hydrogen bonds between the attacking OH(-) ion and various hydrogen bond donating sites (including CH sites) of monomer was necessary for stabilization of the transition state. It was revealed that the α-anomer will be more reactive than the ß-anomer with regard to the denitration reaction. The role of entropy and the denitration ability of various sites are also discussed.

15.
J Infect Dis ; 203(5): 674-82, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21208913

RESUMEN

BACKGROUND: Palivizumab is a US Food and Drug Administration-approved monoclonal antibody for the prevention of respiratory syncytial virus (RSV) lower respiratory disease in high-risk infants. Motavizumab, derived from palivizumab with enhanced antiviral activity, has recently been tested in humans. Although palivizumab escape mutants have been generated in the laboratory, the development of resistant RSV in patients receiving palivizumab has not been reported previously. METHODS: We generated palivizumab and motavizumab escape mutants in vitro and examined the development of resistant mutants in RSV-breakthrough patients receiving immunoprophylaxis. The effect of these mutations on neutralization by palivizumab and motavizumab and in vitro fitness was studied. RESULTS: Antibody-resistant RSV variants selected in vitro had mutations at position 272 of the fusion protein, from lysine to asparagine, methionine, threonine, glutamine, or glutamate. Variants containing mutations at positions 272 and 275 were detected in breakthrough patients. All these variants were resistant to palivizumab, but only the glutamate variant at position 272 demonstrated resistance to motavizumab. Mixtures of wild-type and variant RSV soon lost the resistant phenotype in the absence of selection. CONCLUSIONS: Resistant RSV variants were detected in a small subset (∼ 5%) of RSV breakthrough cases. The fitness of these variants was impaired, compared to wild-type RSV.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antivirales/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitiales Respiratorios/inmunología , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Anticuerpos Antivirales , Farmacorresistencia Viral/genética , Farmacorresistencia Viral/inmunología , Humanos , Lactante , Datos de Secuencia Molecular , Mutación , Mucosa Nasal/virología , Palivizumab , Virus Sincitiales Respiratorios/efectos de los fármacos , Virus Sincitiales Respiratorios/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
J Comput Chem ; 32(10): 2195-203, 2011 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-21541957

RESUMEN

A number of density functionals was utilized for the calculation of electron attachment free energy for nitrocompounds, quinones and azacyclic compounds. Different solvation models have been tested on the calculation of difference in free energies of solvation of oxidized and reduced forms of nitrocompounds in aqueous solution, quinones in acetonitrile, and azacyclic compounds in dimethylformamide. Gas-phase free energies evaluated at the mPWB1K/tzvp level and solvation energies obtained using SMD model to compute solvation energies of neutral oxidized forms and PCM(Pauling) to compute solvation energies of anion-radical reduced forms provide reasonable accuracy of the prediction of electron attachment free energy, difference in free solvation energies of oxidized and reduced forms, and as consequence yield reduction potentials in good agreement with experimental data (mean absolute deviation is 0.15 V). It was also found that SMD/M05-2X/tzvp method provides reduction potentials with deviation of 0.12 V from the experimental values but in cases of nitrocompounds and quinones this accuracy is achieved due to the cancelation of errors. To predict reduction ability of naturally occurred iron containing species with respect to organic pollutants we exploited experimental data within the framework of Pourbaix (Eh - pH) diagrams. We conclude that surface-bound Fe(II) as well as certain forms of aqueous Fe(II)aq are capable of reducing a variety of nitroaromatic compounds, quinones and novel high energy materials under basic conditions (pH > 8). At the same time, zero-valent iron is expected to be active under neutral and acidic conditions.


Asunto(s)
Acetonitrilos/química , Contaminantes Ambientales/química , Nitrocompuestos/química , Quinonas/química , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Oxidación-Reducción
17.
RSC Adv ; 9(62): 36066-36074, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-35540615

RESUMEN

Adsorption energies of various nitrogen-containing compounds (specifically, 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitroanisole (DNAn), and 3-nitro-1,2,4-triazole-5-one (NTO)) on the hydroxylated (001) and (100) α-quartz surfaces are computed. Different density functionals are utilized and both periodic as well as cluster approaches are applied. From the adsorption energies, partition coefficients on the considered α-quartz surfaces are derived. While TNT and DNT are preferably adsorbed on the (001) surface of α-quartz, NTO is rather located on both α-quartz surfaces.

18.
Chemosphere ; 148: 322-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26820779

RESUMEN

The affinity of various energetic compounds for a biological membrane was investigated using experimental and computational techniques. We measured octanol-water (log(Kow)) and liposome-water (log(Klipw)) partition coefficients for the following chemicals: trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), 2,4-dinitroanisole (DNAN), 2methoxy-5-nitrophenol (2M5NP), 2,4,6-trinitrobenzene (TNB), and 2,4-dinitrophenol (2,4-DNP). In order to determine log(Klipw) experimentally, we used artificial solid supported lipid liposomes produced under trade mark TRANSIL. Log(Kow) value were predicted with several program packages including the COSMOthermX software. Log(Klipw) were estimated with COSMOmic as implemented in the COSMOthermX program package. In order to verify accuracy of our experimentally obtained results, we performed basic statistical analysis of data taken from the literature. We concluded that compounds considered in this study possess a moderate ability to penetrate into membranes. Comparison of both coefficients has shown that in general, the log(Kow) values are slightly smaller than log(Klipw).


Asunto(s)
Contaminantes Ambientales/química , Contaminación Ambiental/prevención & control , Liposomas/química , Octanoles/química , Agua/química , Membranas Artificiales , Modelos Teóricos , Nitrobencenos/química , Nitrofenoles/química
19.
Chemosphere ; 134: 31-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25911044

RESUMEN

Alkaline hydrolysis mechanism of possible environmental contaminant RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) was investigated computationally at the PCM(Pauling)/M06-2X/6-311++G(d,p) level of theory. Results obtained show that the initial deprotonation of RDX by hydroxide leads to nitrite elimination and formation of a denitrated cyclohexene intermediate. Further nucleophilic attack by hydroxide onto cyclic CN double bond results in ring opening. It was shown that the presence of hydroxide is crucial for this stage of the reaction. The dominant decomposition pathway leading to a ring-opened intermediate was found to be formation of 4-nitro-2,4-diazabutanal. Hydrolytic transformation of its byproduct (methylene nitramine) leads to end products such as formaldehyde and nitrous oxide. Computational results are in a good agreement with experimental data on hydrolysis of RDX, suggesting that 4-nitro-2,4-diazabutanal, nitrite, formaldehyde, and nitrous oxide are main products for early stages of RDX decomposition under alkaline conditions.


Asunto(s)
Nitritos/análisis , Óxido Nitroso/análisis , Triazinas/análisis , Aldehídos/análisis , Algoritmos , Compuestos de Anilina/química , Compuestos Aza/análisis , Carbono/química , Simulación por Computador , Restauración y Remediación Ambiental , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Nitrobencenos/química , Nitrógeno/química , Espectrofotometría Ultravioleta , Termodinámica , Contaminantes Químicos del Agua/análisis
20.
J Mol Model ; 21(2): 21, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25620422

RESUMEN

In this study thermodynamic parameters of adsorption of nitrogen containing environmental contaminants (NCCs, 2,4,6, trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitroanisole (DNAN), and 3-one-1,2,4-triazol-5-one (NTO)) interacting with the tetrahedral and octahedral surfaces of kaolinite were predicted. Adsorption complexes were investigated using a density functional theory and both periodic and cluster approach. The complexes, modeled using the periodic boundary conditions approach, were fully optimized at the BLYP-D2 level to obtain the structures and adsorption energies. The relaxed kaolinite-NCCs structures were used to prepare cluster models to calculate thermodynamic parameters and partition coefficients at the M06-2X-D3 and BLYP-D2 levels from the gas phase. The entropy effect on the Gibbs free energies of adsorption of NCCS on kaolinite was also studied and compared with available experimental data. The results showed that in all calculated models, the NCCs molecules are physisorbed and they favor a parallel orientation toward both kaolinite surfaces. It was found that all calculated NCCs compounds are more stable on the octahedral than on the tetrahedral surface of kaolinite. The Gibbs free energies and partition coefficients were also predicted for interactions of NCCs with Na-kaolinite from aqueous solution. Calculations revealed adsorption of NCCs is effective from the gas phase on both cation free kaolinite surfaces and on Na-kaolinite from aqueous solution at room temperature. Theoretical data were validated against experimental results, and the reasons for small differences between calculated and measured partition coefficients are discussed.


Asunto(s)
Caolín/química , Modelos Teóricos , Nitrógeno/química , Termodinámica , Adsorción , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA