Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Biology (Basel) ; 11(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36552329

RESUMEN

The influence of climate change on microbial communities inhabiting the sparsely vegetated patterned ground soils that are widespread across the High Arctic is poorly understood. Here, in a four-year experiment on Svalbard, we warmed patterned ground soil with open top chambers and biannually irrigated the soil to predict the responses of its microbial community to rising temperatures and precipitation. A 1 °C rise in summertime soil temperature caused 44% and 78% increases in CO2 efflux and CH4 consumption, respectively, and a 32% increase in the frequency of bacterial 16S ribosomal RNA genes. Bacterial alpha diversity was unaffected by the treatments, but, of the 40 most frequent bacterial taxa, warming caused 44-45% reductions in the relative abundances of a Sphingomonas sp. and Ferruginibacter sp. and 33-91% increases in those of a Phenylobacterium sp. and a member of the Acetobacteraceae. Warming did not influence the frequency of fungal internal transcribed spacer 2 copies, and irrigation had no effects on the measured variables. Our study suggests rapid changes to the activities and abundances of microbes, and particularly bacteria, in High Arctic patterned ground soils as they warm. At current rates of soil warming on Svalbard (0.8 °C per decade), we anticipate that similar effects to those reported here will manifest themselves in the natural environment by approximately the mid 2030s.

2.
BMC Genomics ; 10: 328, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19622137

RESUMEN

BACKGROUND: Insects provide tractable models for enhancing our understanding of the physiological and cellular processes that enable survival at extreme low temperatures. They possess three main strategies to survive the cold: freeze tolerance, freeze avoidance or cryoprotective dehydration, of which the latter method is exploited by our model species, the Arctic springtail Megaphorura arctica, formerly Onychiurus arcticus (Tullberg 1876). The physiological mechanisms underlying cryoprotective dehydration have been well characterised in M. arctica and to date this process has been described in only a few other species: the Antarctic nematode Panagrolaimus davidi, an enchytraied worm, the larvae of the Antarctic midge Belgica antarctica and the cocoons of the earthworm Dendrobaena octaedra. There are no in-depth molecular studies on the underlying cold survival mechanisms in any species. RESULTS: A cDNA microarray was generated using 6,912 M. arctica clones printed in duplicate. Analysis of clones up-regulated during dehydration procedures (using both cold- and salt-induced dehydration) has identified a number of significant cellular processes, namely the production and mobilisation of trehalose, protection of cellular systems via small heat shock proteins and tissue/cellular remodelling during the dehydration process. Energy production, initiation of protein translation and cell division, plus potential tissue repair processes dominate genes identified during recovery. Heat map analysis identified a duplication of the trehalose-6-phosphate synthase (TPS) gene in M. arctica and also 53 clones co-regulated with TPS, including a number of membrane associated and cell signalling proteins. Q-PCR on selected candidate genes has also contributed to our understanding with glutathione-S-transferase identified as the major antioxdidant enzyme protecting the cells during these stressful procedures, and a number of protein kinase signalling molecules involved in recovery. CONCLUSION: Microarray analysis has proved to be a powerful technique for understanding the processes and genes involved in cryoprotective dehydration, beyond the few candidate genes identified in the current literature. Dehydration is associated with the mobilisation of trehalose, cell protection and tissue remodelling. Energy production, leading to protein production, and cell division characterise the recovery process. Novel membrane proteins, along with aquaporins and desaturases, have been identified as promising candidates for future functional analyses to better understand membrane remodelling during cellular dehydration.


Asunto(s)
Artrópodos/genética , Frío , Deshidratación/genética , Glucosiltransferasas/genética , Animales , Artrópodos/enzimología , Artrópodos/fisiología , Crioprotectores/metabolismo , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Genes Duplicados , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Fisiológico , Trehalosa/metabolismo
3.
Gene ; 314: 41-54, 2003 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-14527716

RESUMEN

The human Major Histocompatibility Complex (MHC) Class III region, which lies in between the MHC Class I and Class II regions on chromosome 6p21.3, contains approximately 60 genes with diverse functions. Using bioinformatics analyses, we identified a novel open reading frame (ORF) in this region, telomeric of BAT1, which we called Mitochondrial Coiled-Coil Domain 1 (MCCD1). The expression of the predicted ORF in a number of human tissues was confirmed by RT-PCR analysis. An orthologue of the MCCD1 gene was identified in the swine MHC in an analogous position, adjacent to pig BAT1. The overall sequence identity between the human and pig MCCD1 proteins is only 65.9%, but their C-terminal domains are highly conserved, showing 92% identity over 53 residues. The MCCD1 gene encodes a short polypeptide (119 amino acids) which contains a putative coiled-coil domain at its highly conserved C terminus and a predicted mitochondrial localisation signal at its N terminus. Transient expression in mammalian cells of MCCD1 fused at its C terminus to either EGFP or the T7-epitope tag showed that this protein is indeed targeted to mitochondria. Finally, we characterised the polymorphism in this gene using denaturing high-performance liquid chromatography (DHPLC) analysis and found that the MCCD1 gene is highly polymorphic containing an average of 1 single nucleotide polymorphism (SNP) every 99 bp. Interestingly, MCCD1 contains four SNPs within the coding region, three of which cause nonsynonymous and nonconservative changes in the amino acid sequence.


Asunto(s)
Complejo Mayor de Histocompatibilidad/genética , Proteínas Mitocondriales/genética , Telómero/genética , Adulto , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Línea Celular , Mapeo Cromosómico , ADN/química , ADN/genética , Feto/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Frecuencia de los Genes , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Transfección , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA