Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Diabetologia ; 66(3): 567-578, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36456864

RESUMEN

AIMS/HYPOTHESIS: Athletes exhibit increased muscle insulin sensitivity, despite increased intramuscular triacylglycerol content. This phenomenon has been coined the 'athlete's paradox' and is poorly understood. Recent findings suggest that the subcellular distribution of sn-1,2-diacylglycerols (DAGs) in the plasma membrane leading to activation of novel protein kinase Cs (PKCs) is a crucial pathway to inducing insulin resistance. Here, we hypothesised that regular aerobic exercise would preserve muscle insulin sensitivity by preventing increases in plasma membrane sn-1,2-DAGs and activation of PKCε and PKCθ despite promoting increases in muscle triacylglycerol content. METHODS: C57BL/6J mice were allocated to three groups (regular chow feeding [RC]; high-fat diet feeding [HFD]; RC feeding and running wheel exercise [RC-EXE]). We used a novel LC-MS/MS/cellular fractionation method to assess DAG stereoisomers in five subcellular compartments (plasma membrane [PM], endoplasmic reticulum, mitochondria, lipid droplets and cytosol) in the skeletal muscle. RESULTS: We found that the HFD group had a greater content of sn-DAGs and ceramides in multiple subcellular compartments compared with the RC mice, which was associated with an increase in PKCε and PKCθ translocation. However, the RC-EXE mice showed, of particular note, a reduction in PM sn-1,2-DAG and ceramide content when compared with HFD mice. Consistent with the PM sn-1,2-DAG-novel PKC hypothesis, we observed an increase in phosphorylation of threonine1150 on the insulin receptor kinase (IRKT1150), and reductions in insulin-stimulated IRKY1162 phosphorylation and IRS-1-associated phosphoinositide 3-kinase activity in HFD compared with RC and RC-EXE mice, which are sites of PKCε and PKCθ action, respectively. CONCLUSIONS/INTERPRETATION: These results demonstrate that lower PKCθ/PKCε activity and sn-1,2-DAG content, especially in the PM compartment, can explain the preserved muscle insulin sensitivity in RC-EXE mice.


Asunto(s)
Resistencia a la Insulina , Ratones , Animales , Resistencia a la Insulina/fisiología , Proteína Quinasa C-theta/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Cromatografía Liquida , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , Insulina/metabolismo , Músculo Esquelético/metabolismo , Triglicéridos/metabolismo , Ceramidas/metabolismo
2.
Clin Sci (Lond) ; 137(10): 807-821, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37219940

RESUMEN

Lymphocytes act as regulatory and effector cells in inflammation and infection situations. A metabolic switch towards glycolytic metabolism predominance occurs during T lymphocyte differentiation to inflammatory phenotypes (Th1 and Th17 cells). Maturation of T regulatory cells, however, may require activation of oxidative pathways. Metabolic transitions also occur in different maturation stages and activation of B lymphocytes. Under activation, B lymphocytes undergo cell growth and proliferation, associated with increased macromolecule synthesis. The B lymphocyte response to an antigen challenge requires an increased adenosine triphosphate (ATP) supply derived mainly through glycolytic metabolism. After stimulation, B lymphocytes increase glucose uptake, but they do not accumulate glycolytic intermediates, probably due to an increase in various metabolic pathway 'end product' formation. Activated B lymphocytes are associated with increased utilization of pyrimidines and purines for RNA synthesis and fatty acid oxidation. The generation of plasmablasts and plasma cells from B lymphocytes is crucial for antibody production. Antibody production and secretion require increased glucose consumption since 90% of consumed glucose is needed for antibody glycosylation. This review describes critical aspects of lymphocyte metabolism and functional interplay during activation. We discuss the primary fuels for the metabolism of lymphocytes and the particularities of T and B cell metabolism, including the differentiation of lymphocytes, stages of development of B cells, and the production of antibodies.


Asunto(s)
Linfocitos B , Metabolismo de los Lípidos , Glicosilación , Transporte Biológico , Anticuerpos , Glucosa
3.
Proc Natl Acad Sci U S A ; 117(36): 22544-22551, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32826330

RESUMEN

Obesity is a major health problem worldwide, given its growing incidence and its association with a variety of comorbidities. Weight gain results from an increase in energy intake without a concomitant increase in energy expenditure. To combat the obesity epidemic, many studies have focused on the pathways underlying satiety and hunger signaling, while other studies have concentrated on the mechanisms involved in energy expenditure, most notably adaptive thermogenesis. Hypothyroidism in humans is typically associated with a decreased basal metabolic rate, lower energy expenditure, and weight gain. However, hypothyroid mouse models have been reported to have a leaner phenotype than euthyroid controls. To elucidate the mechanism underlying this phenomenon, we used a drug-free mouse model of hypothyroidism: mice lacking the sodium/iodide symporter (NIS), the plasma membrane protein that mediates active iodide uptake in the thyroid. In addition to being leaner than euthyroid mice, owing in part to reduced food intake, these hypothyroid mice show signs of compensatory up-regulation of the skeletal-muscle adaptive thermogenic marker sarcolipin, with an associated increase in fatty acid oxidation (FAO). Neither catecholamines nor thyroid-stimulating hormone (TSH) are responsible for sarcolipin expression or FAO stimulation; rather, thyroid hormones are likely to negatively regulate both processes in skeletal muscle. Our findings indicate that hypothyroidism in mice results in a variety of metabolic changes, which collectively lead to a leaner phenotype. A deeper understanding of these changes may make it possible to develop new strategies against obesity.


Asunto(s)
Hipotiroidismo/metabolismo , Músculo Esquelético/metabolismo , Termogénesis/fisiología , Animales , Modelos Animales de Enfermedad , Ingestión de Alimentos/fisiología , Masculino , Ratones , Ratones Noqueados , Proteínas Musculares/metabolismo , Fenotipo , Proteolípidos/metabolismo , Simportadores/genética , Simportadores/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(51): 32584-32593, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33293421

RESUMEN

Adiponectin has emerged as a potential therapy for type 2 diabetes mellitus, but the molecular mechanism by which adiponectin reverses insulin resistance remains unclear. Two weeks of globular adiponectin (gAcrp30) treatment reduced fasting plasma glucose, triglyceride (TAG), and insulin concentrations and reversed whole-body insulin resistance, which could be attributed to both improved insulin-mediated suppression of endogenous glucose production and increased insulin-stimulated glucose uptake in muscle and adipose tissues. These improvements in liver and muscle sensitivity were associated with ∼50% reductions in liver and muscle TAG and plasma membrane (PM)-associated diacylglycerol (DAG) content and occurred independent of reductions in total ceramide content. Reductions of PM DAG content in liver and skeletal muscle were associated with reduced PKCε translocation in liver and reduced PKCθ and PKCε translocation in skeletal muscle resulting in increased insulin-stimulated insulin receptor tyrosine1162 phosphorylation, IRS-1/IRS-2-associated PI3-kinase activity, and Akt-serine phosphorylation. Both gAcrp30 and full-length adiponectin (Acrp30) treatment increased eNOS/AMPK activation in muscle and muscle fatty acid oxidation. gAcrp30 and Acrp30 infusions also increased TAG uptake in epididymal white adipose tissue (eWAT), which could be attributed to increased lipoprotein lipase (LPL) activity. These data suggest that adiponectin and adiponectin-related molecules reverse lipid-induced liver and muscle insulin resistance by reducing ectopic lipid storage in these organs, resulting in decreased plasma membrane sn-1,2-DAG-induced nPKC activity and increased insulin signaling. Adiponectin mediates these effects by both promoting the storage of TAG in eWAT likely through stimulation of LPL as well as by stimulation of AMPK in muscle resulting in increased muscle fat oxidation.


Asunto(s)
Adiponectina/farmacología , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Diglicéridos/metabolismo , Insulina/metabolismo , Metabolismo de los Lípidos , Lipoproteína Lipasa/metabolismo , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología
5.
Res Sports Med ; 30(6): 659-676, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34028324

RESUMEN

Futsal promotes stress by handling the ball, physical contact, and exhaustive muscle contractions, elevating the risks for injury, oxidative stress, and inflammation after a training session or a match. In this review, we critically evaluate the more recent advances in the performance and health of futsal players. We searched the effects of futsal on performance, physiological parameters, muscle injury, inflammation, and oxidative stress. Although the stressful factors apply to all futsal players, goalkeepers require special attention during the competition and the recovery phase. We also show that the FIFA injury prevention programme, called The 11+, is effective in improving athletic performance and avoiding injury in futsal players. Research with different training durations and intensities and a wider range of studies involving oxidative stress, inflammation, and physiological mechanisms are of interest to design a more precise map of the biochemical regulation of training load and competition season in futsal.


Asunto(s)
Rendimiento Atlético , Fútbol , Rendimiento Atlético/fisiología , Humanos , Sistema Inmunológico , Inflamación , Estrés Oxidativo , Fútbol/fisiología
6.
Exp Physiol ; 106(9): 1878-1885, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34229361

RESUMEN

NEW FINDINGS: What is the central question of this study? Is lymphocyte DNA methylation differentially modulated by resistance training and aerobic exercise in older women? What is the main finding and its importance? The practice of resistance training led to an increased global DNA methylation in lymphocytes. The exercise-induced increase of inflammatory genes methylation may be associated with immune function impairment during ageing. ABSTRACT: Ageing-induced increase in inflammatory gene expression through a reduction in DNA methylation might contribute to chronic diseases. Regular physical exercise practices, in turn, are associated with a decrease in the incidence of inflammatory diseases. We herein evaluated the effects of three exercise modalities on lymphocyte global and gene-specific (interferon γ (IFN-γ) and interleukin 17A (IL-17A) DNA methylation in aged women (68 ± 7.5 years). This cross-sectional study included 86 women, divided into four groups according to the physical exercise practice: 20 were practicing resistance training (RT); 24 were practicing water aerobics exercise (W); 22 were practicing water aerobics and resistance exercise (RWT), and 20 did not practice any physical exercise (CON). We evaluated volunteer functional capability using the Timed Up and Go (TUG) test, global lymphocyte DNA methylation by enzyme-linked immunosorbent assay, IFN-γ and IL-17A methylation by qPCR and CD4+ IFN-γ+ and CD4+ IL-17+ cell percentage by flow cytometry. The three physically exercised groups performed functional capability tests in a shorter period and showed a higher global lymphocyte DNA methylation and methylated CpGs of IL-17A and IFN-γ promoter regions than the control group. The practice of resistance training (RT and RWT groups) lead to high global DNA methylation. The combination of resistance training and aerobic exercise led to the increase of lymphocyte IL-17A and IFN-γ gene methylation induced by each separately. However, the percentage of IFN-γ+ and IL-17+ cells was lower only in the RT group. The exercise-induced increase of inflammatory-gene methylation may be associated with gene expression changes and immune function impairment during ageing.


Asunto(s)
Interferón gamma , Interleucina-17 , Anciano , Estudios Transversales , Metilación de ADN , Ejercicio Físico , Femenino , Humanos , Interferón gamma/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Linfocitos/metabolismo
7.
J Cell Physiol ; 233(4): 3515-3528, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28926107

RESUMEN

The effect of fenofibrate on the metabolism of skeletal muscle and visceral white adipose tissue of diet-induced obese (DIO) mice was investigated. C57BL/6J male mice were fed either a control or high-fat diet for 8 weeks. Fenofibrate (50 mg/Kg BW, daily) was administered by oral gavage during the last two weeks of the experimental period. Insulin-stimulated glucose metabolism in soleus muscles, glucose tolerance test, insulin tolerance test, indirect calorimetry, lipolysis of visceral white adipose tissue, expression of miR-103-3p in adipose tissue, and miR-1a, miR-133a/b, miR-206, let7b-5p, miR-23b-3p, miR-29-3p, miR-143-3p in soleus muscle, genes related to glucose and fatty acid metabolism in adipose tissue and soleus muscle, and proteins (phospho-AMPKα2, Pgc1α, Cpt1b), intramuscular lipid staining, and activities of fatty acid oxidation enzymes in skeletal muscle were investigated. In DIO mice, fenofibrate prevented weight gain induced by HFD feeding by increasing energy expenditure; improved whole body glucose homeostasis, and in skeletal muscle, increased insulin dependent glucose uptake, miR-1a levels, reduced intramuscular lipid accumulation, and phospho-AMPKα2 levels. In visceral adipose tissue of obese mice, fenofibrate decreased basal lipolysis rate and visceral adipocytes hypertrophy, and induced the expression of Glut-4, Irs1, and Cav-1 mRNA and miR-103-3p suggesting a higher insulin sensitivity of the adipocytes. The evidence is presented herein that beneficial effects of fenofibrate on body weight, glucose homeostasis, and muscle metabolism might be related to its action in adipose tissue. Moreover, fenofibrate regulates miR-1a-3p in soleus and miR-103-3p in adipose tissue, suggesting these microRNAs might contribute to fenofibrate beneficial effects on metabolism.


Asunto(s)
Adipocitos/efectos de los fármacos , Dieta Alta en Grasa , Fenofibrato/farmacología , Hipolipemiantes/farmacología , Músculo Esquelético/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Resistencia a la Insulina/genética , Grasa Intraabdominal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
8.
J Cell Physiol ; 232(5): 958-966, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27736004

RESUMEN

Mitochondria play a critical role in several cellular processes and cellular homeostasis. Mitochondrion dysfunction has been correlated with numerous metabolic diseases such as obesity and type 2 diabetes. MicroRNAs are non-coding RNAs that have emerged as key regulators of cell metabolism. The microRNAs act as central regulators of metabolic gene networks by leading to the degradation of their target messenger RNA or repression of protein translation. In addition, vesicular and non-vesicular circulating miRNAs exhibit a potential role as mediators of the cross-talk between the skeletal muscle and other tissues/organs. In this review, we will focus on the emerging knowledge of miRNAs controlling mitochondrial function and insulin signaling in skeletal muscle cells. J. Cell. Physiol. 232: 958-966, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Insulina/metabolismo , MicroARNs/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Biogénesis de Organelos , Transducción de Señal , Humanos
9.
Exp Physiol ; 101(11): 1392-1405, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27579497

RESUMEN

NEW FINDINGS: What is the central question of this study? Oleic and linoleic acids modulate fibroblast proliferation and myogenic differentiation in vitro. However, their in vivo effects on muscle regeneration have not yet been examined. We investigated the effects of either oleic or linoleic acid on a well-established model of muscle regeneration after severe laceration. What is the main finding and its importance? We found that linoleic acid increases fibrous tissue deposition and impairs muscle regeneration and recovery of contractile function, whereas oleic acid has the opposite effects in severely injured gastrocnemius muscle, suggesting that linoleic acid has a harmful effect and oleic acid a potential therapeutic effect on muscle regeneration. Oleic and linoleic acids control fibroblast proliferation and myogenic differentiation in vitro; however, there was no study in skeletal muscle in vivo. The aim of this study was to evaluate the effects of either oleic or linoleic acid on the fibrous tissue content (collagen deposition) of muscle and recovery of contractile function in rat gastrocnemius muscle after being severely injured by laceration. Rats were supplemented with either oleic or linoleic acid for 4 weeks after laceration [0.44 g (kg body weight)-1 day-1 ]. Muscle injury led to an increase in oleic-to-stearic acid and palmitoleic-to-palmitic acid ratios, suggesting an increase in Δ9 desaturase activity. Increased fibrous tissue deposition and reduced isotonic and tetanic specific forces and resistance to fatigue were observed in the injured muscle. Supplementation with linoleic acid increased the content of eicosadienoic (20:2, n-6) and arachidonic (20:4, n-6) acids, reduced muscle mass and fibre cross-sectional areas, increased fibrous tissue deposition and further reduced the isotonic and tetanic specific forces and resistance to fatigue induced by laceration. Supplementation with oleic acid increased the content of docosahexaenoic acid (22:6, n-3) and abolished the increase in fibrous tissue area and the decrease in isotonic and tetanic specific forces and resistance to fatigue induced by muscle injury. We concluded that supplementation with linoleic acid impairs muscle regeneration and increases fibrous tissue deposition, resulting in impaired recovery of contractile function. Oleic acid supplementation reduced fibrous tissue deposition and improved recovery of contractile function, attenuating the tissue damage caused by muscle injury.


Asunto(s)
Ácido Linoleico/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Ácido Oléico/farmacología , Recuperación de la Función/efectos de los fármacos , Animales , Masculino , Ácido Palmítico/farmacología , Ratas , Ratas Wistar , Ácidos Esteáricos/farmacología
10.
Am J Physiol Endocrinol Metab ; 306(9): E1046-54, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24619883

RESUMEN

mTOR inhibition with rapamycin induces a diabetes-like syndrome characterized by severe glucose intolerance, hyperinsulinemia, and hypertriglyceridemia, which is due to increased hepatic glucose production as well as reduced skeletal muscle glucose uptake and adipose tissue PPARγ activity. Herein, we tested the hypothesis that pharmacological PPARγ activation attenuates the diabetes-like syndrome associated with chronic mTOR inhibition. Rats treated with the mTOR inhibitor rapamycin (2 mg·kg(-1)·day(-1)) in combination or not with the PPARγ ligand rosiglitazone (15 mg·kg(-1)·day(-1)) for 15 days were evaluated for insulin secretion, glucose, insulin, and pyruvate tolerance, skeletal muscle and adipose tissue glucose uptake, and insulin signaling. Rosiglitazone corrected fasting hyperglycemia, attenuated the glucose and insulin intolerances, and abolished the increase in fasting plasma insulin and C-peptide levels induced by rapamycin. Surprisingly, rosiglitazone markedly increased the plasma insulin and C-peptide responses to refeeding in rapamycin-treated rats. Furthermore, rosiglitazone partially attenuated rapamycin-induced gluconeogenesis, as evidenced by the improved pyruvate tolerance and reduced mRNA levels of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Rosiglitazone also restored insulin's ability to stimulate glucose uptake and its incorporation into glycogen in skeletal muscle of rapamycin-treated rats, which was associated with normalization of Akt Ser(473) phosphorylation. However, the rapamycin-mediated impairments of adipose tissue glucose uptake and incorporation into triacylglycerol were unaffected by rosiglitazone. Our findings indicate that PPARγ activation ameliorates some of the disturbances in glucose homeostasis and insulin action associated with chronic rapamycin treatment by reducing gluconeogenesis and insulin secretion and restoring muscle insulin signaling and glucose uptake.


Asunto(s)
Intolerancia a la Glucosa/prevención & control , PPAR gamma/agonistas , Sirolimus/efectos adversos , Tiazolidinedionas/farmacología , Animales , Células Cultivadas , Antagonismo de Drogas , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Músculo Esquelético/metabolismo , PPAR gamma/metabolismo , Ratas , Ratas Sprague-Dawley , Rosiglitazona , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
11.
Lipids Health Dis ; 13: 199, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25528561

RESUMEN

BACKGROUND: Palmitoleic acid was previously shown to improve glucose homeostasis by reducing hepatic glucose production and by enhancing insulin-stimulated glucose uptake in skeletal muscle. Herein we tested the hypothesis that palmitoleic acid positively modulates glucose uptake and metabolism in adipocytes. METHODS: For this, both differentiated 3 T3-L1 cells treated with either palmitoleic acid (16:1n7, 200 µM) or palmitic acid (16:0, 200 µM) for 24 h and primary adipocytes from mice treated with 16:1n7 (300 mg/kg/day) or oleic acid (18:1n9, 300 mg/kg/day) by gavage for 10 days were evaluated for glucose uptake, oxidation, conversion to lactate and incorporation into fatty acids and glycerol components of TAG along with the activity and expression of lipogenic enzymes. RESULTS: Treatment of adipocytes with palmitoleic, but not oleic (in vivo) or palmitic (in vitro) acids, increased basal and insulin-stimulated glucose uptake and GLUT4 mRNA levels and protein content. Along with uptake, palmitoleic acid enhanced glucose oxidation (aerobic glycolysis), conversion to lactate (anaerobic glycolysis) and incorporation into glycerol-TAG, but reduced de novo fatty acid synthesis from glucose and acetate and the activity of lipogenic enzymes glucose 6-phosphate dehydrogenase and ATP-citrate lyase. Importantly, palmitoleic acid induction of adipocyte glucose uptake and metabolism were associated with AMPK activation as evidenced by the increased protein content of phospho(p)Thr172AMPKα, but no changes in pSer473Akt and pThr308Akt. Importantly, such increase in GLUT4 content induced by 16:1n7, was prevented by pharmacological inhibition of AMPK with compound C. CONCLUSIONS: In conclusion, palmitoleic acid increases glucose uptake and the GLUT4 content in association with AMPK activation.


Asunto(s)
Adenilato Quinasa/metabolismo , Adipocitos Blancos/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Transportador de Glucosa de Tipo 4/metabolismo , Glucosa/metabolismo , Células 3T3-L1 , Adipocitos Blancos/efectos de los fármacos , Animales , Activación Enzimática , Expresión Génica , Transportador de Glucosa de Tipo 4/genética , Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Mediators Inflamm ; 2014: 582197, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25147439

RESUMEN

Palmitoleic acid (PMA) has anti-inflammatory and antidiabetic activities. Here we tested whether these effects of PMA on glucose homeostasis and liver inflammation, in mice fed with high-fat diet (HFD), are PPAR-α dependent. C57BL6 wild-type (WT) and PPAR-α-knockout (KO) mice fed with a standard diet (SD) or HFD for 12 weeks were treated after the 10th week with oleic acid (OLA, 300 mg/kg of b.w.) or PMA 300 mg/kg of b.w. Steatosis induced by HFD was associated with liver inflammation only in the KO mice, as shown by the increased hepatic levels of IL1-beta, IL-12, and TNF-α; however, the HFD increased the expression of TLR4 and decreased the expression of IL1-Ra in both genotypes. Treatment with palmitoleate markedly attenuated the insulin resistance induced by the HFD, increased glucose uptake and incorporation into muscle in vitro, reduced the serum levels of AST in WT mice, decreased the hepatic levels of IL1-beta and IL-12 in KO mice, reduced the expression of TLR-4 and increased the expression of IL-1Ra in WT mice, and reduced the phosphorylation of NF ����B (p65) in the livers of KO mice. We conclude that palmitoleate attenuates diet-induced insulin resistance, liver inflammation, and damage through mechanisms that do not depend on PPAR-α.


Asunto(s)
Ácidos Grasos Monoinsaturados/uso terapéutico , PPAR alfa/metabolismo , Animales , Western Blotting , Dieta Alta en Grasa/efectos adversos , Ensayo de Inmunoadsorción Enzimática , Resistencia a la Insulina , Interleucina-12 , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ácido Oléico/metabolismo , Ácido Oléico/uso terapéutico , PPAR alfa/deficiencia , PPAR alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
13.
Mediators Inflamm ; 2014: 870634, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25332517

RESUMEN

Excess of saturated fatty acids in the diet has been associated with obesity, leading to systemic disruption of insulin signaling, glucose intolerance, and inflammation. Macadamia oil administration has been shown to improve lipid profile in humans. We evaluated the effect of macadamia oil supplementation on insulin sensitivity, inflammation, lipid profile, and adipocyte size in high-fat diet (HF) induced obesity in mice. C57BL/6 male mice (8 weeks) were divided into four groups: (a) control diet (CD), (b) HF, (c) CD supplemented with macadamia oil by gavage at 2 g/Kg of body weight, three times per week, for 12 weeks (CD + MO), and (d) HF diet supplemented with macadamia oil (HF + MO). CD and HF mice were supplemented with water. HF mice showed hypercholesterolemia and decreased insulin sensitivity as also previously shown. HF induced inflammation in adipose tissue and peritoneal macrophages, as well as adipocyte hypertrophy. Macadamia oil supplementation attenuated hypertrophy of adipocytes and inflammation in the adipose tissue and macrophages.


Asunto(s)
Inflamación/dietoterapia , Macadamia , Obesidad/dietoterapia , Aceites de Plantas/administración & dosificación , Adipocitos/patología , Animales , Aumento de la Célula , Colesterol/sangre , Citocinas/biosíntesis , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Inflamación/patología , Resistencia a la Insulina , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Obesidad/metabolismo , Obesidad/patología
14.
Artículo en Inglés | MEDLINE | ID: mdl-38682559

RESUMEN

BACKGROUND: The maintenance of skeletal muscle plasticity upon changes in the environment, nutrient supply, and exercise depends on regulatory mechanisms that couple structural and metabolic adaptations. The mechanisms that interconnect both processes at the transcriptional level remain underexplored. Nr2f6, a nuclear receptor, regulates metabolism and cell differentiation in peripheral tissues. However, its role in the skeletal muscle is still elusive. Here, we aimed to investigate the effects of Nr2f6 modulation on muscle biology in vivo and in vitro. METHODS: Global RNA-seq was performed in Nr2f6 knockdown C2C12 myocytes (N = 4-5). Molecular and metabolic assays and proliferation experiments were performed using stable Nr2f6 knockdown and Nr2f6 overexpression C2C12 cell lines (N = 3-6). Nr2f6 content was evaluated in lipid overload models in vitro and in vivo (N = 3-6). In vivo experiments included Nr2f6 overexpression in mouse tibialis anterior muscle, followed by gene array transcriptomics and molecular assays (N = 4), ex vivo contractility experiments (N = 5), and histological analysis (N = 7). The conservation of Nr2f6 depletion effects was confirmed in primary skeletal muscle cells of humans and mice. RESULTS: Nr2f6 knockdown upregulated genes associated with muscle differentiation, metabolism, and contraction, while cell cycle-related genes were downregulated. In human skeletal muscle cells, Nr2f6 knockdown significantly increased the expression of myosin heavy chain genes (two-fold to three-fold) and siRNA-mediated depletion of Nr2f6 increased maximal C2C12 myocyte's lipid oxidative capacity by 75% and protected against lipid-induced cell death. Nr2f6 content decreased by 40% in lipid-overloaded myotubes and by 50% in the skeletal muscle of mice fed a high-fat diet. Nr2f6 overexpression in mice resulted in an atrophic and hypoplastic state, characterized by a significant reduction in muscle mass (15%) and myofibre content (18%), followed by an impairment (50%) in force production. These functional phenotypes were accompanied by the establishment of an inflammation-like molecular signature and a decrease in the expression of genes involved in muscle contractility and oxidative metabolism, which was associated with the repression of the uncoupling protein 3 (20%) and PGC-1α (30%) promoters activity following Nr2f6 overexpression in vitro. Additionally, Nr2f6 regulated core components of the cell division machinery, effectively decoupling muscle cell proliferation from differentiation. CONCLUSIONS: Our findings reveal a novel role for Nr2f6 as a molecular transducer that plays a crucial role in maintaining the balance between skeletal muscle contractile function and oxidative capacity. These results have significant implications for the development of potential therapeutic strategies for metabolic diseases and myopathies.

15.
J Proteome Res ; 12(10): 4532-46, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24001182

RESUMEN

Sarcopenia describes an age-related decline in skeletal muscle mass, strength, and function that ultimately impairs metabolism and leads to poor balance, frequent falling, limited mobility, and a reduction in quality of life. Here we investigate the pathogenesis of sarcopenia through a proteomic shotgun approach. In brief, we employed tandem mass tags to quantitate and compare the protein profiles obtained from young versus old rat slow-twitch type of muscle (soleus) and a fast-twitch type of muscle (extensor digitorum longus, EDL). Our results disclose 3452 and 1848 proteins identified from soleus and EDL muscles samples, of which 78 and 174 were found to be differentially expressed, respectively. In general, most of the proteins were structural related and involved in energy metabolism, oxidative stress, detoxification, or transport. Aging affected soleus and EDL muscles differently, and several proteins were regulated in opposite ways. For example, pyruvate kinase had its expression and activity different in both soleus and EDL muscles. We were able to verify with existing literature many of our differentially expressed proteins as candidate aging biomarkers and, most importantly, disclose several new candidate biomarkers such as the glioblastoma amplified sequence, zero ß-globin, and prolargin.


Asunto(s)
Envejecimiento/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Animales , Transporte Biológico , Creatina Quinasa/metabolismo , Metabolismo Energético , Masculino , Peso Molecular , Músculo Esquelético/fisiología , Tamaño de los Órganos , Estrés Oxidativo , Proteolisis , Proteómica , Piruvato Quinasa/metabolismo , Ratas , Ratas Wistar , Coloración y Etiquetado , Espectrometría de Masas en Tándem
16.
J Pineal Res ; 55(3): 229-39, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23711171

RESUMEN

The pineal gland, through melatonin, seems to be of fundamental importance in determining the metabolic adaptations of adipose and muscle tissues to physical training. Evidence shows that pinealectomized animals fail to develop adaptive metabolic changes in response to aerobic exercise and therefore do not exhibit the same performance as control-trained animals. The known prominent reduction in melatonin synthesis in aging animals led us to investigate the metabolic adaptations to physical training in aged animals with and without daily melatonin replacement. Male Wistar rats were assigned to four groups: sedentary control (SC), trained control (TC), sedentary treated with melatonin (SM), and trained treated with melatonin (TM). Melatonin supplementation lasted 16 wk, and the animals were subjected to exercise during the last 8 wk of the experiment. After euthanasia, samples of liver, muscle, and adipose tissues were collected for analysis. Trained animals treated with melatonin presented better results in the following parameters: glucose tolerance, physical capacity, citrate synthase activity, hepatic and muscular glycogen content, body weight, protein expression of phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), and protein kinase activated by adenosine monophosphate (AMPK) in the liver, as well as the protein expression of the glucose transporter type 4 (GLUT4) and AMPK in the muscle. In conclusion, these results demonstrate that melatonin supplementation in aging animals is of great importance for the required metabolic adaptations induced by aerobic exercise. Adequate levels of circulating melatonin are, therefore, necessary to improve energetic metabolism efficiency, reducing body weight and increasing insulin sensitivity.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Antioxidantes/farmacología , Suplementos Dietéticos , Melatonina/farmacología , Condicionamiento Físico Animal , Tejido Adiposo/metabolismo , Envejecimiento/fisiología , Animales , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Ratas , Ratas Wistar
17.
J Strength Cond Res ; 27(9): 2612-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23249823

RESUMEN

A futsal player's performance depends on his technical and tactical skills but may be improved by a less harmful inflammatory profile that is better adjusted to his tactical position in the game. Thus, the purpose of this study was to characterize muscle lesion and inflammation in futsal players according to their positions in an official match. The participants in this study were 5 goalkeepers (23 ± 1.2 years old, body mass = 74 ± 2.5 kg, height = 178 ± 3.2 cm, body fat = 13 ± 2%, VO2max = 40 ± 2 ml·kg(-1)), 8 defenders (21 ± 1 years, body mass = 69 ± 2 kg, height = 174 ± 1 cm, body fat = 10 ± 2%, VO2max 42 ± 1 ml·kg(-1)), 8 wingers (22 ± 1 years, body mass = 68 ± 2 kg, height = 169 ± 3 cm, body fat = 11 ± 2%, VO2max = 48 ± 1 ml·kg(-1)), and 8 pivots (25 ± 2 years, body mass 71 ± 2 kg, height 173 ± 2 cm, body fat 10 ± 2%, VO2max 46 ± 2 ml·kg(-1)). Blood samples were collected from the participants before and immediately after a match. Muscle damage was detected based on CK and lactate dehydrogenase (LDH) activity. The inflammatory status was evaluated by determining C-reactive protein and cytokines (TNF-α, interleukin [IL]-1ß, IL-6, IL-10, and IL-1ra). Goalkeepers showed higher LDH and IL-6 than players occupying other tactical positions, leading to the conclusion that the tactical position of futsal goalkeeper causes more inflammation and muscle damage than other positions. Moreover, this position is usually occupied by athletes with higher body mass and percentage of body fat and lower VO2max than players in the other positions.


Asunto(s)
Rendimiento Atlético/fisiología , Creatina Quinasa/sangre , Inflamación/etiología , Mialgia/etiología , Fútbol/fisiología , Adulto , Rendimiento Atlético/estadística & datos numéricos , Proteína C-Reactiva/análisis , Humanos , Proteína Antagonista del Receptor de Interleucina 1/sangre , Interleucina-10/sangre , Interleucina-1beta/sangre , Interleucina-6/sangre , L-Lactato Deshidrogenasa/sangre , Masculino , Fútbol/estadística & datos numéricos , Factor de Necrosis Tumoral alfa/sangre , Adulto Joven
18.
Am J Physiol Endocrinol Metab ; 303(2): E272-82, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22621868

RESUMEN

The aim of this study was to investigate whether treatment with tributyrin (Tb; a butyrate prodrug) results in protection against diet-induced obesity and associated insulin resistance. C57BL/6 male mice fed a standard chow or high-fat diet were treated with Tb (2 g/kg body wt, 10 wk) and evaluated for glucose homeostasis, plasma lipid profile, and inflammatory status. Tb protected mice against obesity and obesity-associated insulin resistance and dyslipidemia without food consumption being affected. Tb attenuated the production of TNFα and IL-1ß by peritoneal macrophages and their expression in adipose tissue. Furthermore, in the adipose tissue, Tb reduced the expression of MCP-1 and infiltration by leukocytes and restored the production of adiponectin. These effects were associated with a partial reversion of hepatic steatosis, reduction in liver and skeletal muscle content of phosphorylated JNK, and an improvement in muscle insulin-stimulated glucose uptake and Akt signaling. Although part of the beneficial effects of Tb are likely to be secondary to the reduction in body weight, we also found direct protective actions of butyrate reducing TNFα production after LPS injection and in vitro by LPS- or palmitic acid-stimulated macrophages and attenuating lipolysis in vitro and in vivo. The results, reported herein, suggest that Tb may be useful for the treatment and prevention of obesity-related metabolic disorders.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina , Obesidad/prevención & control , Triglicéridos/uso terapéutico , Adiponectina/biosíntesis , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Glucemia/efectos de los fármacos , Quimiocina CCL2/biosíntesis , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Interleucina-1beta/biosíntesis , Lípidos/sangre , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Obesidad/etiología , Factor de Necrosis Tumoral alfa/biosíntesis
19.
Curr Opin Clin Nutr Metab Care ; 15(2): 112-6, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22234165

RESUMEN

PURPOSE OF REVIEW: It has been demonstrated that fatty acids (FAs) are physiological ligands of G-protein-coupled receptors (GPRs). Activation of the GPRs (40, 41, 43, 84, 119 and 120) by FAs or synthetic agonists modulates several responses. In this review, we discuss the current knowledge on the actions of FA-activated GPRs and their relevance in normal and pathological conditions. RECENT FINDINGS: Studies have shown that FA-activated GPRs modulate hormone secretion (incretin, insulin and glucagon), activation of leukocytes and several aspects of metabolism. SUMMARY: Understanding GPR actions and their involvement in the development of insulin-resistance, ß-cell failure, dyslipidemia and inflammation associated with obesity, type 2 diabetes, metabolic syndrome and cardiovascular diseases is important for the comprehension of the mechanisms underlying these pathological conditions and for the establishment of new and effective interventions.


Asunto(s)
Ácidos Grasos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/fisiopatología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/fisiopatología , Dislipidemias/complicaciones , Dislipidemias/fisiopatología , Conducta Alimentaria , Tracto Gastrointestinal/metabolismo , Humanos , Incretinas/metabolismo , Inflamación/complicaciones , Inflamación/fisiopatología , Insulina/metabolismo , Resistencia a la Insulina , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Leucocitos/metabolismo , Ligandos , Obesidad/complicaciones , Obesidad/fisiopatología
20.
J Biomed Biotechnol ; 2012: 379024, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049242

RESUMEN

Inflammation and insulin resistance are common in several chronic diseases, such as obesity, type 2 diabetes mellitus, metabolic syndrome, cancer, and cardiovascular diseases. Various studies show a relationship between these two factors, although the mechanisms involved are not completely understood yet. Here, we discuss the molecular basis of insulin resistance and inflammation and the molecular aspects on inflammatory pathways interfering in insulin action. Moreover, we explore interventions based on molecular targets for preventing or treating correlated disorders, advances for a better characterization, and understanding of the mechanisms and mediators involved in the different inflammatory and insulin resistance conditions. Finally, we address biotechnological studies for the development of new potential therapies and interventions.


Asunto(s)
Inflamación/tratamiento farmacológico , Inflamación/inmunología , Resistencia a la Insulina , Insulina/metabolismo , Terapia Molecular Dirigida/métodos , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA