Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Langmuir ; 32(31): 7730-4, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27409715

RESUMEN

The detachment of a semiordered monolayer of polystyrene microspheres adhered to an aluminum-coated glass substrate is studied using a laser-induced spallation technique. The microsphere-substrate adhesion force is estimated from substrate surface displacement measurements obtained using optical interferometry, and a rigid-body model that accounts for the inertia of the microspheres. The estimated adhesion force is compared with estimates obtained using an adhesive contact model together with interferometric measurements of the out-of-plane microsphere contact resonance, and with estimated work of adhesion values for the polystyrene-aluminum interface. Scanning electron microscope images of detached monolayer regions reveal a unique morphology, namely, partially detached monolayer flakes composed of single hexagonal close packed crystalline domains. This work contributes to the fields of microsphere adhesion and contact dynamics, and demonstrates a unique monolayer delamination morphology.

2.
J Micromech Microeng ; 25: 055013, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26097292

RESUMEN

Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low cost detection of Mycobacterium Tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing- and rinsing steps are presented with use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU/mL, comparable to a more labor-intensive fluorescence detection method reported previously.

3.
Analyst ; 138(11): 3135-8, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23594970

RESUMEN

A single-step concentration and elution method is developed for detection of DNA in buffer, saliva, and blood. A nanotip capturing DNA using an electric field and capillary action is directly dissolved in buffer for qPCR analysis. The concentration yield and the relative parameters are compared with those of a commercial kit.


Asunto(s)
Métodos Analíticos de la Preparación de la Muestra/métodos , ADN/genética , ADN/aislamiento & purificación , Nanotecnología/métodos , Reacción en Cadena de la Polimerasa/métodos , Bacteriófago lambda/genética , Compuestos Inorgánicos de Carbono/química , ADN/análisis , ADN/sangre , ADN Viral/análisis , ADN Viral/genética , Genoma Humano/genética , Humanos , Nanocables/química , Saliva/química , Compuestos de Silicona/química , Factores de Tiempo
4.
Nanoscale ; 11(12): 5655-5665, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30865190

RESUMEN

Longitudinal contact-based vibrations of colloidal crystals with a controlled layer thickness are studied. These crystals consist of 390 nm diameter polystyrene spheres arranged into close packed, ordered lattices with a thickness of one to twelve layers. Using laser ultrasonics, eigenmodes of the crystals that have out-of-plane motion are excited. The particle-substrate and effective interlayer contact stiffnesses in the colloidal crystals are extracted using a discrete, coupled oscillator model. Extracted stiffnesses are correlated with scanning electron microscope images of the contacts and atomic force microscope characterization of the substrate surface topography after removal of the spheres. Solid bridges of nanometric thickness are found to drastically alter the stiffness of the contacts, and their presence is found to be dependent on the self-assembly process. Measurements of the eigenmode quality factors suggest that energy leakage into the substrate plays a role for low frequency modes but is overcome by disorder- or material-induced losses at higher frequencies. These findings help further the understanding of the contact mechanics, and the effects of disorder in three-dimensional micro- and nano-particulate systems, and open new avenues to engineer new types of micro- and nanostructured materials with wave tailoring functionalities via control of the adhesive contact properties.

5.
PLoS One ; 9(1): e86018, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465845

RESUMEN

An occupationally safe (biosafe) sputum liquefaction protocol was developed for use with a semi-automated antibody-based microtip immunofluorescence sensor. The protocol effectively liquefied sputum and inactivated microorganisms including Mycobacterium tuberculosis, while preserving the antibody-binding activity of Mycobacterium cell surface antigens. Sputum was treated with a synergistic chemical-thermal protocol that included moderate concentrations of NaOH and detergent at 60°C for 5 to 10 min. Samples spiked with M. tuberculosis complex cells showed approximately 10(6)-fold inactivation of the pathogen after treatment. Antibody binding was retained post-treatment, as determined by analysis with a microtip immunosensor. The sensor correctly distinguished between Mycobacterium species and other cell types naturally present in biosafe-treated sputum, with a detection limit of 100 CFU/mL for M. tuberculosis, in a 30-minute sample-to-result process. The microtip device was also semi-automated and shown to be compatible with low-cost, LED-powered fluorescence microscopy. The device and biosafe sputum liquefaction method opens the door to rapid detection of tuberculosis in settings with limited laboratory infrastructure.


Asunto(s)
Técnicas Biosensibles/métodos , Técnica del Anticuerpo Fluorescente/métodos , Procedimientos Analíticos en Microchip/métodos , Mycobacterium tuberculosis/citología , Esputo/microbiología , Tuberculosis/diagnóstico , Técnicas Biosensibles/instrumentación , Técnica del Anticuerpo Fluorescente/instrumentación , Interacciones Huésped-Patógeno , Humanos , Dispositivos Laboratorio en un Chip , Microscopía Fluorescente/métodos , Mycobacterium tuberculosis/fisiología , Salud Laboral , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Factores de Tiempo , Tuberculosis/microbiología
6.
RSC Adv ; 3(13): 4281-4287, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23585927

RESUMEN

Electric detection using a nanocomponent may lead to platforms for rapid and simple biosensing. Sensors composed of nanotips or nanodots have been described for highly sensitive amperometry enabled by confined geometry. However, both fabrication and use of nanostructured sensors remain challenging. This paper describes a dendritic nanotip used as an amperometric biosensor for highly sensitive detection of target bacteria. A dendritic nanotip is structured by Si nanowires coated with single-walled carbon nanotubes (SWCNTs) for generation of a high electric field. For reliable measurement using the dendritic structure, Si nanowires were uniformly fabricated by ultraviolet (UV) lithography and etching. The dendritic structure effectively increased the electric current density near the terminal end of the nanotip according to numerical computation. The electrical characteristics of a dendritic nanotip with additional protein layers was studied by cyclic voltammetry and I-V measurement in deionized (DI) water. When the target bacteria dielectrophoretically captured onto a nanotip were bound with fluorescence antibodies, the electric current through DI water decreased. Measurement results were consistent with fluorescence- and electron microscopy. The sensitivity of the amperometry was 10 cfu/sample volume (103 cfu/mL), which was equivalent to the more laborious fluorescence measurement method. The simple configuration of a dendritic nanotip can potentially offer an electrolyte-free detection platform for sensitive and rapid biosensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA