Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Chem Biol ; 15(11): 1102-1109, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31611703

RESUMEN

Synthetic microbial consortia have an advantage over isogenic synthetic microbes because they can apportion biochemical and regulatory tasks among the strains. However, it is difficult to coordinate gene expression in spatially extended consortia because the range of signaling molecules is limited by diffusion. Here, we show that spatio-temporal coordination of gene expression can be achieved even when the spatial extent of the consortium is much greater than the diffusion distance of the signaling molecules. To do this, we examined the dynamics of a two-strain synthetic microbial consortium that generates coherent oscillations in small colonies. In large colonies, we find that temporally coordinated oscillations across the population depend on the presence of an intrinsic positive feedback loop that amplifies and propagates intercellular signals. These results demonstrate that synthetic multicellular systems can be engineered to exhibit coordinated gene expression using only transient, short-range coupling among constituent cells.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Microbiota/genética
2.
Proc Natl Acad Sci U S A ; 111(3): 972-7, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24395809

RESUMEN

Synthetic biology promises to revolutionize biotechnology by providing the means to reengineer and reprogram cellular regulatory mechanisms. However, synthetic gene circuits are often unreliable, as changes to environmental conditions can fundamentally alter a circuit's behavior. One way to improve robustness is to use intrinsic properties of transcription factors within the circuit to buffer against intra- and extracellular variability. Here, we describe the design and construction of a synthetic gene oscillator in Escherichia coli that maintains a constant period over a range of temperatures. We started with a previously described synthetic dual-feedback oscillator with a temperature-dependent period. Computational modeling predicted and subsequent experiments confirmed that a single amino acid mutation to the core transcriptional repressor of the circuit results in temperature compensation. Specifically, we used a temperature-sensitive lactose repressor mutant that loses the ability to repress its target promoter at high temperatures. In the oscillator, this thermoinduction of the repressor leads to an increase in period at high temperatures that compensates for the decrease in period due to Arrhenius scaling of the reaction rates. The result is a transcriptional oscillator with a nearly constant period of 48 min for temperatures ranging from 30 °C to 41 °C. In contrast, in the absence of the mutation the period of the oscillator drops from 60 to 30 min over the same temperature range. This work demonstrates that synthetic gene circuits can be engineered to be robust to extracellular conditions through protein-level modifications.


Asunto(s)
Relojes Circadianos , Escherichia coli/metabolismo , Redes Reguladoras de Genes , Ingeniería de Proteínas , Biología Sintética , Simulación por Computador , Proteínas de Escherichia coli/metabolismo , Isopropil Tiogalactósido/química , Represoras Lac/metabolismo , Microfluídica , Mutación , Proteínas/química , Temperatura , Factores de Tiempo
3.
PLoS Comput Biol ; 11(12): e1004674, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26693906

RESUMEN

Synthetic gene oscillators are small, engineered genetic circuits that produce periodic variations in target protein expression. Like other gene circuits, synthetic gene oscillators are noisy and exhibit fluctuations in amplitude and period. Understanding the origins of such variability is key to building predictive models that can guide the rational design of synthetic circuits. Here, we developed a method for determining the impact of different sources of noise in genetic oscillators by measuring the variability in oscillation amplitude and correlations between sister cells. We first used a combination of microfluidic devices and time-lapse fluorescence microscopy to track oscillations in cell lineages across many generations. We found that oscillation amplitude exhibited high cell-to-cell variability, while sister cells remained strongly correlated for many minutes after cell division. To understand how such variability arises, we constructed a computational model that identified the impact of various noise sources across the lineage of an initial cell. When each source of noise was appropriately tuned the model reproduced the experimentally observed amplitude variability and correlations, and accurately predicted outcomes under novel experimental conditions. Our combination of computational modeling and time-lapse data analysis provides a general way to examine the sources of variability in dynamic gene circuits.


Asunto(s)
Relojes Biológicos/genética , Redes Reguladoras de Genes/genética , Genes Sintéticos/genética , Variación Genética/genética , Modelos Genéticos , Oscilometría/métodos , Simulación por Computador , Regulación de la Expresión Génica/genética , Humanos , Masculino
4.
bioRxiv ; 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36711600

RESUMEN

Spatial structure within microbial communities can provide nearly limitless opportunities for social interactions and are an important driver for evolution. As metabolites are often molecular signals, metabolite diffusion within microbial communities can affect the composition and dynamics of the community in a manner that can be challenging to deconstruct. We used encapsulation of a synthetic microbial community within microdroplets to investigate the effects of spatial structure and metabolite diffusion on population dynamics and to examine the effects of cheating by one member of the community. The synthetic community was comprised of three strains: a 'Producer' that makes the diffusible quorum sensing molecule ( N -(3-Oxododecanoyl)-L-homoserine lactone, C12-oxo-HSL) or AHL; a 'Receiver' that is killed by AHL and a Non-Producer or 'cheater' that benefits from the extinction of the Receivers, but without the costs associated with the AHL synthesis. We demonstrate that despite rapid diffusion of AHL between microdroplets, the spatial structure imposed by the microdroplets allow a more efficient but transient enrichment of more rare and slower growing 'Producer' subpopulations. Eventually, the Non-Producer population drove the Producers to extinction. By including fluorescence-activated microdroplet sorting and providing sustained competition by the Receiver strain, we demonstrate a strategy for indirect enrichment of a rare and unlabeled Producer. The ability to screen and enrich metabolite Producers from a much larger population under conditions of rapid diffusion provides an important framework for the development of applications in synthetic ecology and biotechnology.

5.
ACS Synth Biol ; 12(4): 1239-1251, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-36929925

RESUMEN

Spatial structure within microbial communities can provide nearly limitless opportunities for social interactions and are an important driver for evolution. As metabolites are often molecular signals, metabolite diffusion within microbial communities can affect the composition and dynamics of the community in a manner that can be challenging to deconstruct. We used encapsulation of a synthetic microbial community within microdroplets to investigate the effects of spatial structure and metabolite diffusion on population dynamics and to examine the effects of cheating by one member of the community. The synthetic community was composed of three strains: a "Producer" that makes the diffusible quorum sensing molecule (N-(3-oxododecanoyl)-l-homoserine lactone, C12-oxo-HSL) or AHL; a "Receiver" that is killed by AHL; and a Non-Producer or "cheater" that benefits from the extinction of the Receivers, but without the costs associated with the AHL synthesis. We demonstrate that despite rapid diffusion of AHL between microdroplets, the spatial structure imposed by the microdroplets allows a more efficient but transient enrichment of more rare and slower-growing Producer subpopulations. Eventually, the Non-Producer population drove the Producers to extinction. By including fluorescence-activated microdroplet sorting and providing sustained competition by the Receiver strain, we demonstrate a strategy for indirect enrichment of a rare and unlabeled Producer. The ability to screen and enrich metabolite Producers from a much larger population under conditions of rapid diffusion provides an important framework for the development of applications in synthetic ecology and biotechnology.


Asunto(s)
4-Butirolactona , Lactonas , Lactonas/metabolismo , Percepción de Quorum/genética
6.
ACS Synth Biol ; 12(12): 3531-3543, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38016068

RESUMEN

One challenge in synthetic biology is the tuning of regulatory components within gene circuits to elicit a specific behavior. This challenge becomes more difficult in synthetic microbial consortia since each strain's circuit must function at the intracellular level and their combination must operate at the population level. Here we demonstrate that circuit dynamics can be tuned in synthetic consortia through the manipulation of strain fractions within the community. To do this, we construct a microbial consortium comprised of three strains of engineered Escherichia coli that, when cocultured, use homoserine lactone-mediated intercellular signaling to create a multistrain incoherent type-1 feedforward loop (I1-FFL). Like naturally occurring I1-FFL motifs in gene networks, this engineered microbial consortium acts as a pulse generator of gene expression. We demonstrate that the amplitude of the pulse can be easily tuned by adjusting the relative population fractions of the strains. We also develop a mathematical model for the temporal dynamics of the microbial consortium. This model allows us to identify population fractions that produced desired pulse characteristics, predictions that were confirmed for all but extreme fractions. Our work demonstrates that intercellular gene circuits can be effectively tuned simply by adjusting the starting fractions of each strain in the consortium.


Asunto(s)
Escherichia coli , Consorcios Microbianos , Consorcios Microbianos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Transducción de Señal , Modelos Teóricos , Redes Reguladoras de Genes/genética , Biología Sintética
7.
ACS Synth Biol ; 8(9): 2051-2058, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31361464

RESUMEN

Synthetic microbial consortia consist of two or more engineered strains that grow together and share the same resources. When intercellular signaling pathways are included in the engineered strains, close proximity of the microbes can generate complex dynamic behaviors that are difficult to obtain using a single strain. However, when a consortium is not cultured in a well-mixed environment the constituent strains passively compete for space as they grow and divide, complicating cell-cell signaling. Here, we explore the temporal dynamics of the spatial distribution of consortia cocultured in microfluidic devices. To do this, we grew two different strains of Escherichia coli in microfluidic devices with cell-trapping regions (traps) of several different designs. We found that the size of the traps is a critical determinant of spatiotemporal dynamics. In small traps, cells can easily signal one another, but the relative proportion of each strain within the trap can fluctuate wildly. In large traps, the relative ratio of strains is stabilized, but intercellular signaling can be hindered by distances between cells. This presents a trade-off between the trap size and the effectiveness of intercellular signaling, which can be mitigated by increasing the initial seeding of cells in larger traps. We also built a mathematical model, which suggests that increasing the number of seed cells can also increase the strain ratio variability due to an increased number of strain interfaces in the trap. These results help elucidate the complex behaviors of synthetic microbial consortia in microfluidic traps and provide a means of analysis to help remedy the spatial heterogeneity inherent to different trap types.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Consorcios Microbianos/fisiología , Microfluídica/métodos , Escherichia coli/metabolismo , Dispositivos Laboratorio en un Chip , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Interacciones Microbianas , Microfluídica/instrumentación , Percepción de Quorum/genética
8.
ACS Synth Biol ; 6(11): 1996-2002, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28841307

RESUMEN

Transcription factors and their target promoters are central to synthetic biology. By arranging these components into novel gene regulatory circuits, synthetic biologists have been able to create a wide variety of phenotypes, including bistable switches, oscillators, and logic gates. However, transcription factors (TFs) do not instantaneously regulate downstream targets. After the gene encoding a TF is turned on, the gene must first be transcribed, the transcripts must be translated, and sufficient TF must accumulate in order to bind operator sites of the target promoter. The time to complete this process, here called the "signaling time," is a critical aspect in the design of dynamic regulatory networks, yet it remains poorly characterized. In this work, we measured the signaling time of two TFs in Escherichia coli commonly used in synthetic biology: the activator AraC and the repressor LacI. We found that signaling times can range from a few to tens of minutes, and are affected by the expression rate of the TF. Our single-cell data also show that the variability of the signaling time increases with its mean. To validate these signaling time measurements, we constructed a two-step genetic cascade, and showed that the signaling time of the full cascade can be predicted from those of its constituent steps. These results provide concrete estimates for the time scales of transcriptional regulation in living cells, which are important for understanding the dynamics of synthetic transcriptional gene circuits.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Ingeniería Genética/métodos , Factores de Transcripción , Transcripción Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Science ; 349(6251): 986-9, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26315440

RESUMEN

A challenge of synthetic biology is the creation of cooperative microbial systems that exhibit population-level behaviors. Such systems use cellular signaling mechanisms to regulate gene expression across multiple cell types. We describe the construction of a synthetic microbial consortium consisting of two distinct cell types­an "activator" strain and a "repressor" strain. These strains produced two orthogonal cell-signaling molecules that regulate gene expression within a synthetic circuit spanning both strains. The two strains generated emergent, population-level oscillations only when cultured together. Certain network topologies of the two-strain circuit were better at maintaining robust oscillations than others. The ability to program population-level dynamics through the genetic engineering of multiple cooperative strains points the way toward engineering complex synthetic tissues and organs with multiple cell types.


Asunto(s)
Escherichia coli/genética , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Consorcios Microbianos/genética , Consorcios Microbianos/fisiología , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Retroalimentación Fisiológica , Ingeniería Genética , Dispositivos Laboratorio en un Chip , Interacciones Microbianas , Modelos Biológicos , Regiones Promotoras Genéticas , Percepción de Quorum , Transducción de Señal , Biología Sintética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA