Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 60(23): 18017-18023, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34779197

RESUMEN

Antiperovskites are a promising candidate structure for the exploration of new materials. We discovered an antiperovskite phosphide, LaPd3P, following our recent synthesis of APd3P (A = Ca, Sr, Ba). While APd3P and (Ca,Sr)Pd3P were found to be tetragonal or orthorhombic systems, LaPd3P is a new prototype cubic system (a = 9.0317(1) Å) with a noncentrosymmetric space group (I4̅3m). LaPd3P exhibited superconductivity with a transition temperature (Tc) of 0.28 K. The upper critical field, Debye temperature, and Sommerfeld constant (γ) were determined to be 0.305(8) kOe, 267(1) K, and 6.06(4) mJ mol-1 K-2 f.u.-1, respectively. We performed first-principles electronic band structure calculations for LaPd3P and compared the theoretical and experimental results. The calculated Sommerfeld constant (2.24 mJ mol-1 K-2 f.u.-1) was much smaller than the experimental value of γ because the Fermi energy (EF) was located slightly below the density of states (DOS) pseudogap. This difference was explained by the increase in the DOS at EF due to the approximately 5 atom % La deficiency (hole doping) in the sample. The observed Tc value was much lower than that estimated using the Bardeen-Cooper-Schrieffer equation. To explain the discrepancy, we examined the possibility of an unconventional superconductivity in LaPd3P arising from the lack of space inversion symmetry.

2.
Inorg Chem ; 59(17): 12397-12403, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32845611

RESUMEN

In this study, we succeeded in synthesizing new antiperovskite phosphides MPd3P (M = Ca, Sr, Ba) and discovered the appearance of a superconducting phase (0.17 ≤ x ≤ 0.55) in a solid solution (Ca1-xSrx)Pd3P. Three perovskite-related crystal structures were identified in (Ca1-xSrx)Pd3P, and a phase diagram was built on the basis of experimental results. The first phase transition from centrosymmetric (Pnma) to noncentrosymmetric orthorhombic (Aba2) occurred in CaPd3P near room temperature. The phase transition temperature decreased as Ca2+ was replaced with a larger-sized isovalent Sr2+. Bulk superconductivity at a critical temperature (Tc) of approximately 3.5 K was observed in a range of x = 0.17-0.55; this was associated with the centrosymmetric orthorhombic phase. Thereafter, a noncentrosymmetric tetragonal phase (I41md) remained stable for 0.6 ≤ x ≤ 1.0, and superconductivity was significantly suppressed as samples with x = 0.75 and 1.0 showed Tc values as low as 0.32 K and 57 mK, respectively. For further substitution with a larger-sized isovalent Ba2+, namely, (Sr1-yBay)Pd3P, the tetragonal phase continued throughout the composition range. BaPd3P no longer showed superconductivity down to 20 mK. Since the inversion symmetry of structure and superconductivity can be precisely controlled in (Ca1-xSrx)Pd3P, this material may offer a unique opportunity to study the relationship between inversion symmetry and superconductivity.

3.
J Phys Chem Lett ; 12(17): 4180-4186, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33900082

RESUMEN

Topological insulators with broken time-reversal symmetry and the Fermi level within the magnetic gap at the Dirac cone provides exotic topological magneto-electronic phenomena. Here, we introduce an improved magnetically doped topological insulator, Fe-doped BiSbTe2Se (Fe-BSTS) bulk single crystal, with an ideal Fermi level. Scanning tunneling microscopy and spectroscopy (STM/STS) measurements revealed that the surface state possesses a Dirac cone with the Dirac point just below the Fermi level by 12 meV. The normalized dI/dV spectra suggest a gap opening with Δmag ∼55 meV, resulting in the Fermi level within the opened gap. Ionic-liquid gated-transport measurements also support the Dirac point just below the Fermi level and the presence of the magnetic gap. The chemical potential of the surface state can be fully tuned by ionic-liquid gating, and thus the Fe-doped BSTS provides an ideal platform to investigate exotic quantum topological phenomena.

4.
Adv Mater ; 31(30): e1901942, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31157482

RESUMEN

Recently the metastable 1T'-type VIB-group transition metal dichalcogenides (TMDs) have attracted extensive attention due to their rich and intriguing physical properties, including superconductivity, valleytronics physics, and topological physics. Here, a new layered WS2 dubbed "2M" WS2 , is constructed from 1T' WS2 monolayers, is synthesized. Its phase is defined as 2M based on the number of layers in each unit cell and the subordinate crystallographic system. Intrinsic superconductivity is observed in 2M WS2 with a transition temperature Tc of 8.8 K, which is the highest among TMDs not subject to any fine-tuning process. Furthermore, the electronic structure of 2M WS2 is found by Shubnikov-de Haas oscillations and first-principles calculations to have a strong anisotropy. In addition, topological surface states with a single Dirac cone, protected by topological invariant Z2 , are predicted through first-principles calculations. These findings reveal that the new 2M WS2 might be an interesting topological superconductor candidate from the VIB-group transition metal dichalcogenides.

5.
Sci Rep ; 7: 42440, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28195565

RESUMEN

Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA