Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Stem Cells ; 41(12): 1157-1170, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37651107

RESUMEN

Articular cartilage plays vital roles as a friction minimizer and shock absorber during joint movement but has a poor capacity to self-repair when damaged through trauma or disease. Cartilage tissue engineering is an innovative technique for cartilage regeneration, yet its therapeutic application requires chondrocytes in large numbers. Direct reprogramming of somatic cells to chondrocytes by expressing SOX9, KLF4, and c-MYC offers a promising option to generate chondrocytes in sufficient numbers; however, the low efficiency of the reprogramming system warrants further improvement. Here we referred to structural and functional features of SOX9 and performed alanine-scanning mutagenesis of functionally critical residues in the HMG box and at putative posttranslational modification (PTM) sites. We discovered that a SOX9 variant H131A/K398A, doubly mutated in the HMG box (H131) and at a PTM site (K398), significantly upregulated expression of chondrogenic genes and potently induced chondrocytes from mouse embryonic fibroblasts. The H131A/K398A variant remained unsumoylated in cells and exhibited a stronger DNA-binding activity than wild-type SOX9, especially when complexed with other proteins. Our results show that the novel SOX9 variant may be useful for efficient induction of chondrocytes and illuminate the strategic feasibility of mutating a transcription factor at functionally critical residues to expedite discovery of an optimized reprogramming factor.


Asunto(s)
Cartílago Articular , Condrocitos , Animales , Ratones , Condrocitos/metabolismo , Fibroblastos/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Células Cultivadas
2.
Stem Cells ; 40(4): 397-410, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35385105

RESUMEN

Somatic cell reprogramming proceeds through a series of events to generate induced pluripotent stem cells (iPSCs). The early stage of reprogramming of mouse embryonic fibroblasts is characterized by rapid cell proliferation and morphological changes, which are accompanied by downregulation of mesenchyme-associated genes. However, the functional relevance of their downregulation to reprogramming remains poorly defined. In this study, we have screened transcriptional regulators that are downregulated immediately upon reprogramming, presumably through direct targeting by reprogramming factors. To test if these transcriptional regulators impact reprogramming when expressed continuously, we generated an expression vector that harbors human cytomegalovirus upstream open reading frame 2 (uORF2), which reduces translation to minimize the detrimental effect of an expressed protein. Screening of transcriptional regulators with this expression vector revealed that downregulation of (odd-skipped related 2 [Osr2]) is crucial for efficient reprogramming. Using a cell-based model for epithelial-mesenchymal transition (EMT), we show that Osr2 is a novel EMT regulator that acts through induction of transforming growth factor-ß (TGF-ß) signaling. During reprogramming, Osr2 downregulation not only diminishes TGF-ß signaling but also allows activation of Wnt signaling, thus promoting mesenchymal-epithelial transition (MET) toward acquisition of pluripotency. Our results illuminate the functional significance of Osr2 downregulation in erasing the mesenchymal phenotype at an early stage of somatic cell reprogramming.


Asunto(s)
Transición Epitelial-Mesenquimal , Células Madre Pluripotentes Inducidas , Animales , Reprogramación Celular/genética , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal/genética , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499566

RESUMEN

Pluripotency is a crucial feature of pluripotent stem cells, which are regulated by the core pluripotency network consisting of key transcription factors and signaling molecules. However, relatively less is known about the molecular mechanisms that modify the core pluripotency network. Here we used the CAPTURE (CRISPR Affinity Purification in situ of Regulatory Elements) to unbiasedly isolate proteins assembled on the Nanog promoter in mouse embryonic stem cells (mESCs), and then tested their functional relevance to the maintenance of mESCs and reprogramming of somatic cells. Gene ontology analysis revealed that the identified proteins, including many RNA-binding proteins (RBPs), are enriched in RNA-related functions and gene expression. ChIP-qPCR experiments confirmed that BCLAF1, FUBP1, MSH6, PARK7, PSIP1, and THRAP3 occupy the Nanog promoter region in mESCs. Knockdown experiments of these factors show that they play varying roles in self-renewal, pluripotency gene expression, and differentiation of mESCs as well as in the reprogramming of somatic cells. Our results show the utility of unbiased identification of chromatin-associated proteins on a pluripotency gene in mESCs and reveal the functional relevance of RBPs in ESC differentiation and somatic cell reprogramming.


Asunto(s)
Células Madre Embrionarias de Ratones , Células Madre Pluripotentes , Animales , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Cromatina/genética , Cromatina/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular/genética , Regiones Promotoras Genéticas , Reprogramación Celular/genética , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Proteína Desglicasa DJ-1/metabolismo
4.
J Chem Phys ; 155(12): 125102, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34598561

RESUMEN

We visualized a dynamic process of fatty acid uptake of brown adipocytes using a time-lapse ultra-broadband multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopic imaging system with an onstage incubator. Combined with the deuterium labeling technique, the intracellular uptake of saturated fatty acids was traced up to 9 h, a substantial advance over the initial multiplex CARS system, with an analysis time of 80 min. Characteristic metabolic activities of brown adipocytes, such as resistance to lipid saturation, were elucidated, supporting the utility of the newly developed system.


Asunto(s)
Adipocitos Marrones/citología , Adipocitos Marrones/metabolismo , Ácidos Grasos/metabolismo , Incubadoras , Metabolismo de los Lípidos , Espectrometría Raman , Animales , Línea Celular , Ratones , Imagen de Lapso de Tiempo
5.
Proc Natl Acad Sci U S A ; 113(46): 13057-13062, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27794120

RESUMEN

Fibrodysplasia ossificans progressiva (FOP) patients carry a missense mutation in ACVR1 [617G > A (R206H)] that leads to hyperactivation of BMP-SMAD signaling. Contrary to a previous study, here we show that FOP fibroblasts showed an increased efficiency of induced pluripotent stem cell (iPSC) generation. This positive effect was attenuated by inhibitors of BMP-SMAD signaling (Dorsomorphin or LDN1931890) or transducing inhibitory SMADs (SMAD6 or SMAD7). In normal fibroblasts, the efficiency of iPSC generation was enhanced by transducing mutant ACVR1 (617G > A) or SMAD1 or adding BMP4 protein at early times during the reprogramming. In contrast, adding BMP4 at later times decreased iPSC generation. ID genes, transcriptional targets of BMP-SMAD signaling, were critical for iPSC generation. The BMP-SMAD-ID signaling axis suppressed p16/INK4A-mediated cell senescence, a major barrier to reprogramming. These results using patient cells carrying the ACVR1 R206H mutation reveal how cellular signaling and gene expression change during the reprogramming processes.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miositis Osificante , Proteínas Smad/metabolismo , Receptores de Activinas Tipo I/genética , Adolescente , Adulto , Animales , Línea Celular , Reprogramación Celular , Senescencia Celular , Niño , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Femenino , Humanos , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Mutación , Miositis Osificante/genética , Transducción de Señal
6.
Int J Mol Sci ; 20(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067778

RESUMEN

Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hold a huge promise for regenerative medicine, drug development, and disease modeling. PSCs have unique metabolic features that are akin to those of cancer cells, in which glycolysis predominates to produce energy as well as building blocks for cellular components. Recent studies indicate that the unique metabolism in PSCs is not a mere consequence of their preference for a low oxygen environment, but is an active process for maintaining self-renewal and pluripotency, possibly in preparation for rapid response to the metabolic demands of differentiation. Understanding the regulatory mechanisms of this unique metabolism in PSCs is essential for proper derivation, generation, and maintenance of PSCs. In this review, we discuss the metabolic features of PSCs and describe the current understanding of the mechanisms of the metabolic shift during reprogramming from somatic cells to iPSCs, in which the metabolism switches from oxidative phosphorylation (OxPhos) to glycolysis.


Asunto(s)
Reprogramación Celular , Metabolismo Energético , Células Madre Pluripotentes/metabolismo , Animales , Humanos , Mitocondrias/metabolismo , Células Madre Pluripotentes/citología
7.
Genes Dev ; 23(23): 2765-77, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19952111

RESUMEN

Transcription elongation factor DSIF/Spt4-Spt5 is capable of promoting and inhibiting RNA polymerase II elongation and is involved in the expression of various genes. While it has been known for many years that DSIF inhibits elongation in collaboration with the negative elongation factor NELF, how DSIF promotes elongation is largely unknown. Here, an activity-based biochemical approach was taken to understand the mechanism of elongation activation by DSIF. We show that the Paf1 complex (Paf1C) and Tat-SF1, two factors implicated previously in elongation control, collaborate with DSIF to facilitate efficient elongation. In human cells, these factors are recruited to the FOS gene in a temporally coordinated manner and contribute to its high-level expression. We also show that elongation activation by these factors depends on P-TEFb-mediated phosphorylation of the Spt5 C-terminal region. A clear conclusion emerging from this study is that a set of elongation factors plays nonredundant, cooperative roles in elongation. This study also shows unambiguously that Paf1C, which is generally thought to have chromatin-related functions, is involve directlyd in elongation control.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Genes fos/genética , Células HeLa , Humanos , Mutación , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación , Factores de Elongación Transcripcional
8.
J Biol Chem ; 290(44): 26832-45, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26381409

RESUMEN

The c-fos gene is rapidly induced to high levels by various extracellular stimuli. We used a defined in vitro transcription system that utilizes the c-fos promoter to purify a coactivator activity in an unbiased manner. We report here that NF45-NF90 and NF45-NF110, which possess archetypical double-stranded RNA binding motifs, have a direct function as transcriptional coactivators. The transcriptional activities of the nuclear factor (NF) complexes (NF45-NF90 and NF45-NF110) are mediated by both the upstream enhancer and core promoter regions of the c-fos gene and do not require their double-stranded RNA binding activities. The NF complexes cooperate with general coactivators, PC4 and Mediator, to elicit a high level of transcription and display multiple interactions with activators and the components of the general transcriptional machinery. Knockdown of the endogenous NF90/NF110 in mouse cells shows an important role for the NF complexes in inducing c-fos transcription. Chromatin immunoprecipitation assays demonstrate that the NF complexes occupy the c-fos enhancer/promoter region before and after serum induction and that their occupancies within the coding region of the c-fos gene increase in parallel to that of RNAPII upon serum induction. In light of their dynamic occupancy on the c-fos gene as well as direct functions in both transcription and posttranscriptional processes, the NF complexes appear to serve as multifunctional coactivators that coordinate different steps of gene expression to facilitate rapid response of inducible genes.


Asunto(s)
Genes fos , Proteína del Factor Nuclear 45/genética , Proteínas del Factor Nuclear 90/genética , ARN Polimerasa II/genética , Transcripción Genética , Animales , Baculoviridae/genética , Sitios de Unión , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Cinética , Complejo Mediador/genética , Complejo Mediador/metabolismo , Ratones , Proteína del Factor Nuclear 45/metabolismo , Proteínas del Factor Nuclear 90/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Polimerasa II/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Transducción de Señal , Spodoptera , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Genes Cells ; 20(3): 203-16, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25492609

RESUMEN

In eukaryotes, the general transcription factor TFIIE consists of two subunits, α and ß, and plays essential roles in transcription. Structure-function studies indicate that TFIIE has three-winged helix (WH) motifs, with one in TFIIEα and two in TFIIEß. Recent studies suggested that, by binding to the clamp region of RNA polymerase II, TFIIEα-WH promotes the conformational change that transforms the promoter-bound inactive preinitiation complex to the active complex. Here, to elucidate its roles in transcription, functional analyses of point-mutated human TFIIEα-WH proteins were carried out. In vitro transcription analyses identified two classes of mutants. One class was defective in transcription initiation, and the other was defective in the transition from initiation to elongation. Analyses of the binding of this motif to other general transcription factors showed that the former class was defective in binding to the basic helix-loop-helix motif of TFIIEß and the latter class was defective in binding to the N-terminal cyclin homology region of TFIIB. Furthermore, TFIIEα-WH bound to the TFIIH XPB subunit at a third distinct region. Therefore, these results provide further insights into the mechanisms underlying RNA polymerase II activation at the initial stages of transcription.


Asunto(s)
Elongación de la Transcripción Genética , Factor de Transcripción TFIIB/metabolismo , Factores de Transcripción TFII/metabolismo , Iniciación de la Transcripción Genética , Factores de Transcripción Winged-Helix/metabolismo , Animales , Células CHO , Caenorhabditis elegans , Cricetulus , Drosophila melanogaster , Secuencias Hélice-Asa-Hélice , Humanos , Mutación , Saccharomyces cerevisiae , Schizosaccharomyces , Sulfolobus solfataricus , Factor de Transcripción TFIIH/metabolismo , Xenopus laevis
10.
Mol Cell ; 32(2): 221-31, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18951090

RESUMEN

Forkhead box O (FOXO) transcription factors, the key regulators of cell survival, are negatively controlled through the PI3K-Akt signaling pathway. Phosphorylation of FOXO by Akt leads to cytoplasmic localization and subsequent degradation via the ubiquitin-proteasome system. Here we show a paradigm of FOXO1 regulation by the protein arginine methyltransferase PRMT1. PRMT1 methylated FOXO1 at conserved Arg248 and Arg250 within a consensus motif for Akt phosphorylation; this methylation directly blocked Akt-mediated phosphorylation of FOXO1 at Ser253 in vitro and in vivo. Silencing of PRMT1 by small interfering RNA enhanced nuclear exclusion, polyubiquitination, and proteasomal degradation of FOXO1. PRMT1 knockdown led to a decrease in oxidative-stress-induced apoptosis depending on the PI3K-Akt signaling pathway. Furthermore, stable expression of enzymatic inactive PRMT1 mutant increased resistance to apoptosis, whereas this effect was reversed by expression of phosphorylation-deficient FOXO1. Our findings predict a role for arginine methylation as an inhibitory modification against Akt-mediated phosphorylation.


Asunto(s)
Arginina/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas Proto-Oncogénicas c-akt/fisiología , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Apoptosis , Secuencia de Consenso , Proteína Forkhead Box O1 , Silenciador del Gen , Humanos , Metilación , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/fisiología , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Serina/metabolismo , Activación Transcripcional/fisiología , Ubiquitinación
11.
J Biol Chem ; 288(43): 31299-312, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23990468

RESUMEN

Osteoclast formation is regulated by balancing between the receptor activator of nuclear factor-κB ligand (RANKL) expressed in osteoblasts and extracellular negative regulatory cytokines such as interferon-γ (IFN-γ) and interferon-ß (IFN-ß), which can suppress excessive bone destruction. However, relatively little is known about intrinsic negative regulatory factors in RANKL-mediated osteoclast differentiation. Here, we show the paired-box homeodomain transcription factor Pax6 acts as a negative regulator of RANKL-mediated osteoclast differentiation. Electrophoretic mobility shift and reporter assays found that Pax6 binds endogenously to the proximal region of the tartrate acid phosphatase (TRAP) gene promoter and suppresses nuclear factor of activated T cells c1 (NFATc1)-induced TRAP gene expression. Introduction of Pax6 retrovirally into bone marrow macrophages attenuates RANKL-induced osteoclast formation. Moreover, we found that the Groucho family member co-repressor Grg6 contributes to Pax6-mediated suppression of the TRAP gene expression induced by NFATc1. These results suggest that Pax6 interferes with RANKL-mediated osteoclast differentiation together with Grg6. Our results demonstrate that the Pax6 pathway constitutes a new aspect of the negative regulatory circuit of RANKL-RANK signaling in osteoclastogenesis and that the augmentation of Pax6 might therefore represent a novel target to block pathological bone resorption.


Asunto(s)
Fosfatasa Ácida/metabolismo , Células de la Médula Ósea/metabolismo , Diferenciación Celular/fisiología , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Isoenzimas/metabolismo , Osteoclastos/metabolismo , Factores de Transcripción Paired Box/metabolismo , Ligando RANK/metabolismo , Proteínas Represoras/metabolismo , Elementos de Respuesta/fisiología , Fosfatasa Ácida/genética , Animales , Células de la Médula Ósea/citología , Células Cultivadas , Proteínas Co-Represoras , Proteínas del Ojo/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Humanos , Isoenzimas/genética , Ratones , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Osteoclastos/citología , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Ligando RANK/genética , Proteínas Represoras/genética , Fosfatasa Ácida Tartratorresistente
12.
J Biol Eng ; 18(1): 9, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229076

RESUMEN

BACKGROUND: Viral vectors are attractive gene delivery vehicles because of their broad tropism, high transduction efficiency, and durable expression. With no risk of integration into the host genome, the vectors developed from RNA viruses such as Sendai virus (SeV) are especially promising. However, RNA-based vectors have limited applicability because they lack a convenient method to control transgene expression by an external inducer. RESULTS: We engineered a Csy4 switch in Sendai virus-based vectors by combining Csy4 endoribonuclease with mutant FKBP12 (DD: destabilizing domain) that becomes stabilized when a small chemical Shield1 is supplied. In this Shield1-responsive Csy4 (SrC) switch, Shield1 increases Csy4 fused with DD (DD-Csy4), which then cleaves and downregulates the transgene mRNA containing the Csy4 recognition sequence (Csy4RS). Moreover, when Csy4RS is inserted in the viral L gene, the SrC switch suppresses replication and transcription of the SeV vector in infected cells in a Shield1-dependent manner, thus enabling complete elimination of the vector from the cells. By temporally controlling BRN4 expression, a BRN4-expressing SeV vector equipped with the SrC switch achieves efficient, stepwise differentiation of embryonic stem cells into neural stem cells, and then into astrocytes. CONCLUSION: SeV-based vectors with the SrC switch should find wide applications in stem cell research, regenerative medicine, and gene therapy, especially when precise control of reprogramming factor expression is desirable.

13.
iScience ; 25(1): 103525, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35106457

RESUMEN

Non-genetically modified somatic cells can only be inefficiently and stochastically reprogrammed to pluripotency by exogenous expression of reprogramming factors. Low competence of natural reprogramming factors may prevent the majority of cells to successfully and synchronously reprogram. Here we screened DNA-interacting amino acid residues in the zinc-finger domain of KLF4 for enhanced reprogramming efficiency using alanine-substitution scanning methods. Identified KLF4 L507A mutant accelerated and stabilized reprogramming to pluripotency in both mouse and human somatic cells. By testing all the variants of L507 position, variants with smaller amino acid residues in the KLF4 L507 position showed higher reprogramming efficiency. L507A bound more to promoters or enhancers of pluripotency genes, such as KLF5, and drove gene expression of these genes during reprogramming. Molecular dynamics simulations predicted that L507A formed additional interactions with DNA. Our study demonstrates how modifications in amino acid residues of DNA-binding domains enable next-generation reprogramming technology with engineered reprogramming factors.

14.
Stem Cell Reports ; 17(1): 53-67, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34919813

RESUMEN

Reprogramming of murine female somatic cells to induced pluripotent stem cells (iPSCs) is accompanied by X chromosome reactivation (XCR), by which the inactive X chromosome (Xi) in female somatic cells becomes reactivated. However, how Xi initiates reactivation during reprogramming remains poorly defined. Here, we used a Sendai virus-based reprogramming system to generate partially reprogrammed iPSCs that appear to be undergoing the initial phase of XCR. Allele-specific RNA-seq of these iPSCs revealed that XCR initiates at a subset of genes clustered near the centromere region. The initial phase of XCR occurs when the cells transit through mesenchymal-epithelial transition (MET) before complete shutoff of Xist expression. Moreover, regulatory regions of these genes display dynamic changes in lysine-demethylase 1a (KDM1A) occupancy. Our results identified clustered genes on the Xi that show reactivation in the initial phase of XCR during reprogramming and suggest a possible role for histone demethylation in this process.


Asunto(s)
Diferenciación Celular/genética , Reprogramación Celular/genética , Familia de Multigenes , Activación Transcripcional , Inactivación del Cromosoma X/genética , Alelos , Animales , Biomarcadores , Técnicas de Reprogramación Celular , Fibroblastos , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Histona Demetilasas , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de la Célula Individual , Transcriptoma
15.
J Biol Chem ; 285(13): 9390-9401, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20089855

RESUMEN

The rapid induction of the c-fos gene correlates with phosphorylations of histone H3 and HMGN1 by mitogen- and stress-activated protein kinases. We have used a cell-free system to dissect the mechanism by which MSK1 phosphorylates histone H3 within the c-fos chromatin. Here, we show that the reconstituted c-fos chromatin presents a strong barrier to histone H3 phosphorylation by MSK1; however, the activators (serum response factor, Elk-1, cAMP-response element-binding protein (CREB), and ATF1) bound on their cognate sites recruit MSK1 to phosphorylate histone H3 at Ser-10 within the chromatin. This activator-dependent phosphorylation of histone H3 is enhanced by HMGN1 and occurs preferentially near the promoter region. Among the four activators, CREB plays a predominant role in MSK1-mediated phosphorylation of histone H3, and the phosphorylation of Ser-133 in CREB is essential for this process. Mutational analyses of MSK1 show that its N-terminal inhibition domain is critical for the kinase to phosphorylate chromatin-embedded histone H3 in a CREB-dependent manner, indicating the presence of an intricate regulatory network for MSK1-mediated phosphorylation of histone H3.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Histonas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Cromatina/química , Análisis Mutacional de ADN , Redes Reguladoras de Genes , Células HeLa , Histonas/química , Humanos , Modelos Genéticos , Fosforilación , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Serina/química , Transcripción Genética
16.
Int J Hematol ; 113(4): 493-499, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33385293

RESUMEN

Sendai virus (SeV) vectors are being recognized as a superior tool for gene transfer. Here, we report the transfection efficacy of a novel, high-performance, replication-defective, and persistent Sendai virus (SeVdp) vector in cultured cells and in mice using a near-infrared fluorescent protein (iRFP)-mediated in vivo imaging system. The novel SeVdp vector established persistent infection, and strong expression of inserted genes was sustained indefinitely in vitro. Analysis of iRFP-expressing cells transplanted subcutaneously into NOG, nude, and ICR mice suggests that innate immunity was involved in the exclusion of the transplanted cells. We also evaluated the feasibility of this novel SeVdp vector for hemophilia A gene therapy. This system enabled insertion of full-length FVIII genes, and transduced cells secreted FVIII into the culture medium. Transient FVIII activity was detected in the plasma of mice after intraperitoneal transplantation of these FVIII-secreting cells. Further improvement in methods to evade immunity, such as simultaneous expression of immunomodulatory genes, would make this novel vector a very useful tool in regenerative medicine.


Asunto(s)
Terapia Genética , Vectores Genéticos/genética , Hemofilia A/genética , Hemofilia A/terapia , Virus Sendai/genética , Animales , Pruebas de Coagulación Sanguínea , Línea Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Cultivadas , Modelos Animales de Enfermedad , Factor VIII/genética , Expresión Génica , Orden Génico , Técnicas de Transferencia de Gen , Genes Reporteros , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Humanos , Ratones , Ratones Noqueados , Transducción Genética , Transgenes
17.
Sci Rep ; 9(1): 1777, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741960

RESUMEN

Pluripotent stem cells (PSCs) have various degrees of pluripotency, which necessitates selection of PSCs with high pluripotency before their application to regenerative medicine. However, the quality control processes for PSCs are costly and time-consuming, and it is essential to develop inexpensive and less laborious selection methods for translation of PSCs into clinical applications. Here we developed an imaging system, termed Phase Distribution (PD) imaging system, which visualizes subcellular structures quantitatively in unstained and unlabeled cells. The PD image and its derived PD index reflected the mitochondrial content, enabling quantitative evaluation of the degrees of somatic cell reprogramming and PSC differentiation. Moreover, the PD index allowed unbiased grouping of PSC colonies into those with high or low pluripotency without the aid of invasive methods. Finally, the PD imaging system produced three-dimensional images of PSC colonies, providing further criteria to evaluate pluripotency of PSCs. Thus, the PD imaging system may be utilized for screening of live PSCs with potentially high pluripotency prior to more rigorous quality control processes.


Asunto(s)
Microscopía Fluorescente/métodos , Células Madre Pluripotentes/citología , Fracciones Subcelulares/ultraestructura , Animales , Diferenciación Celular , Colorantes Fluorescentes , Humanos , Ratones , Mitocondrias/ultraestructura , Células 3T3 NIH , Células Madre Pluripotentes/ultraestructura
18.
PLoS One ; 14(11): e0225213, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31730675

RESUMEN

Uncoupling protein 1 (UCP1) is a mitochondrial protein that is expressed in both brown and beige adipocytes. UCP1 uncouples the mitochondrial electron transport chain from ATP synthesis to produce heat via non-shivering thermogenesis. Due to their ability to dissipate energy as heat and ameliorate metabolic disorders, UCP1-expressing adipocytes are considered as a potential target for anti-obesity treatment. To monitor the expression of UCP1 in live mice in a non-invasive manner, we generated the Ucp1-iRFP720 knock-in (Ucp1-iRFP720 KI) mice, in which the gene encoding a near-infrared fluorescent protein iRFP720 is inserted into the Ucp1 gene locus. Using the heterozygous Ucp1-iRFP720 KI mice, we observed robust iRFP fluorescence in the interscapular region where brown adipose tissue is located. Moreover, the iRFP fluorescence was clearly observable in inguinal white adipose tissues in live mice administered with ß3-adrenergic receptor agonist CL316,243. We also found that the homozygous Ucp1-iRFP720 KI mice, which are deficient in UCP1, displayed prominent iRFP fluorescence in the inguinal regions at the standard housing temperature. Consistent with this, the mice exhibited expanded populations of beige-like adipocytes in inguinal white adipose tissue, in which the Ucp1 promoter was dramatically activated. Thus, the Ucp1-iRFP720 KI mice provide a convenient model for non-invasive in vivo imaging of UCP1 expression in both brown and beige adipocytes in live mice.


Asunto(s)
Expresión Génica , Proteínas Luminiscentes/genética , Imagen Molecular , Proteína Desacopladora 1/genética , Adipocitos Beige/metabolismo , Animales , Línea Celular , Marcación de Gen , Sitios Genéticos , Genotipo , Humanos , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Imagen Molecular/métodos , Espectroscopía Infrarroja Corta , Proteína Desacopladora 1/metabolismo , Proteína Fluorescente Roja
19.
Cell Rep ; 29(7): 1909-1922.e5, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31722206

RESUMEN

Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) is accompanied by dramatic changes in epigenetic programs, including silencing of endogenous and exogenous retroviruses. Here, we utilized replication-defective and persistent Sendai virus (SeVdp)-based vectors to monitor retroviral silencing during reprogramming. We observed that retroviral silencing occurred at an early reprogramming stage without a requirement for KLF4 or the YY1-binding site in the retroviral genome. Insertional chromatin immunoprecipitation (iChIP) enabled us to isolate factors assembled on the silenced provirus, including components of inhibitor of histone acetyltransferase (INHAT), which includes the SET/TAF-I oncoprotein. Knockdown of SET/TAF-I in mouse embryonic fibroblasts (MEFs) diminished retroviral silencing during reprogramming, and overexpression of template activating factor-I α (TAF-Iα), a SET/TAF-I isoform predominant in embryonic stem cells (ESCs), reinforced retroviral silencing by an SeVdp-based vector that is otherwise defective in retroviral silencing. Our results indicate an important role for TAF-Iα in retroviral silencing during reprogramming.


Asunto(s)
Técnicas de Reprogramación Celular , Reprogramación Celular , Retrovirus Endógenos , Silenciador del Gen , Células Madre Embrionarias de Ratones , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/virología , Virus Sendai/genética , Virus Sendai/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
20.
Biochem Biophys Rep ; 15: 86-92, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30094351

RESUMEN

Generation of induced pluripotent stem cells (iPSCs) with naive pluripotency is important for their applications in regenerative medicine. In female iPSCs, acquisition of naive pluripotency is coupled to X chromosome reactivation (XCR) during somatic cell reprogramming, and live cell monitoring of XCR is potentially useful for analyzing how iPSCs acquire naive pluripotency. Here we generated female mouse embryonic stem cells (ESCs) that carry the enhanced green fluorescent protein (EGFP) and humanized Kusabira-Orange (hKO) genes inserted into an intergenic site near either the Syap1 or Taf1 gene on both X chromosomes. The ESC clones, which initially expressed both EGFP and hKO, inactivated one of the fluorescent protein genes upon differentiation, indicating that the EGFP and hKO genes are subject to X chromosome inactivation (XCI). When the derived somatic cells carrying the EGFP gene on the inactive X chromosome (Xi) were reprogrammed into iPSCs, the EGFP gene on the Xi was reactivated when pluripotency marker genes were induced. Thus, the fluorescent protein genes inserted into an intergenic locus on both X chromosomes enable live cell monitoring of XCI during ESC differentiation and XCR during reprogramming. This is the first study that succeeded live cell imaging of XCR during reprogramming.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA