Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Lipid Res ; 63(9): 100255, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35850241

RESUMEN

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a triplet guanine-adenine-adenine (GAA) repeat expansion in intron 1 of the FXN gene, which leads to decreased levels of the frataxin protein. Frataxin is involved in the formation of iron-sulfur (Fe-S) cluster prosthetic groups for various metabolic enzymes. To provide a better understanding of the metabolic status of patients with FRDA, here we used patient-derived fibroblast cells as a surrogate tissue for metabolic and lipidomic profiling by liquid chromatography-high resolution mass spectrometry. We found elevated HMG-CoA and ß-hydroxybutyrate-CoA levels, implying dysregulated fatty acid oxidation, which was further demonstrated by elevated acyl-carnitine levels. Lipidomic profiling identified dysregulated levels of several lipid classes in FRDA fibroblast cells when compared with non-FRDA fibroblast cells. For example, levels of several ceramides were significantly increased in FRDA fibroblast cells; these results positively correlated with the GAA repeat length and negatively correlated with the frataxin protein levels. Furthermore, stable isotope tracing experiments indicated increased ceramide synthesis, especially for long-chain fatty acid-ceramides, in FRDA fibroblast cells compared with ceramide synthesis in healthy control fibroblast cells. In addition, PUFA-containing triglycerides and phosphatidylglycerols were enriched in FRDA fibroblast cells and negatively correlated with frataxin levels, suggesting lipid remodeling as a result of FXN deficiency. Altogether, we demonstrate patient-derived fibroblast cells exhibited dysregulated metabolic capabilities, and their lipid dysfunction predicted the severity of FRDA, making them a useful surrogate to study the metabolic status in FRDA.


Asunto(s)
Ataxia de Friedreich , Ácido 3-Hidroxibutírico , Adenina/metabolismo , Carnitina/metabolismo , Ceramidas/metabolismo , Coenzima A/metabolismo , Fibroblastos/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Guanina/metabolismo , Humanos , Hierro/metabolismo , Fosfatidilgliceroles , Azufre/metabolismo , Triglicéridos/metabolismo
2.
Cancer Res ; 82(10): 1890-1908, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35315913

RESUMEN

Solid tumors possess heterogeneous metabolic microenvironments where oxygen and nutrient availability are plentiful (fertile regions) or scarce (arid regions). While cancer cells residing in fertile regions proliferate rapidly, most cancer cells in vivo reside in arid regions and exhibit a slow-cycling state that renders them chemoresistant. Here, we developed an in vitro system enabling systematic comparison between these populations via transcriptome analysis, metabolomic profiling, and whole-genome CRISPR screening. Metabolic deprivation led to pronounced transcriptional and metabolic reprogramming, resulting in decreased anabolic activities and distinct vulnerabilities. Reductions in anabolic, energy-consuming activities, particularly cell proliferation, were not simply byproducts of the metabolic challenge, but rather essential adaptations. Mechanistically, Bcl-xL played a central role in the adaptation to nutrient and oxygen deprivation. In this setting, Bcl-xL protected quiescent cells from the lethal effects of cell-cycle entry in the absence of adequate nutrients. Moreover, inhibition of Bcl-xL combined with traditional chemotherapy had a synergistic antitumor effect that targeted cycling cells. Bcl-xL expression was strongly associated with poor patient survival despite being confined to the slow-cycling fraction of human pancreatic cancer cells. These findings provide a rationale for combining traditional cancer therapies that target rapidly cycling cells with those that target quiescent, chemoresistant cells associated with nutrient and oxygen deprivation. SIGNIFICANCE: The majority of pancreatic cancer cells inhabit nutrient- and oxygen-poor tumor regions and require Bcl-xL for their survival, providing a compelling antitumor metabolic strategy.


Asunto(s)
Neoplasias Pancreáticas , Proteína bcl-X , Apoptosis , Ciclo Celular , Línea Celular Tumoral , Humanos , Nutrientes , Oxígeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Microambiente Tumoral , Proteína bcl-X/metabolismo
3.
Commun Biol ; 4(1): 421, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772108

RESUMEN

In pancreatic islets, catabolism of tryptophan into serotonin and serotonin receptor 2B (HTR2B) activation is crucial for ß-cell proliferation and maternal glucose regulation during pregnancy. Factors that reduce serotonin synthesis and perturb HTR2B signaling are associated with decreased ß-cell number, impaired insulin secretion, and gestational glucose intolerance in mice. Albeit the tryptophan-serotonin pathway is dependent on vitamin B6 bioavailability, how vitamin B6 deficiency impacts ß-cell proliferation during pregnancy has not been investigated. In this study, we created a vitamin B6 deficient mouse model and investigated how gestational deficiency influences maternal glucose tolerance. Our studies show that gestational vitamin B6 deficiency decreases serotonin levels in maternal pancreatic islets and reduces ß-cell proliferation in an HTR2B-dependent manner. These changes were associated with glucose intolerance and insulin resistance, however insulin secretion remained intact. Our findings suggest that vitamin B6 deficiency-induced gestational glucose intolerance involves additional mechanisms that are complex and insulin independent.


Asunto(s)
Diabetes Gestacional/fisiopatología , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/fisiología , Serotonina/fisiología , Transducción de Señal , Deficiencia de Vitamina B 6/fisiopatología , Animales , Diabetes Gestacional/etiología , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Embarazo
4.
Cancer Discov ; 11(12): 3106-3125, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34244212

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is characterized by large intracellular lipid droplets containing free and esterified cholesterol; however, the functional significance of cholesterol accumulation in ccRCC cells is unknown. We demonstrate that, surprisingly, genes encoding cholesterol biosynthetic enzymes are repressed in ccRCC, suggesting a dependency on exogenous cholesterol. Mendelian randomization analyses based on 31,000 individuals indicate a causal link between elevated circulating high-density lipoprotein (HDL) cholesterol and ccRCC risk. Depriving ccRCC cells of either cholesterol or HDL compromises proliferation and survival in vitro and tumor growth in vivo; in contrast, elevated dietary cholesterol promotes tumor growth. Scavenger Receptor B1 (SCARB1) is uniquely required for cholesterol import, and inhibiting SCARB1 is sufficient to cause ccRCC cell-cycle arrest, apoptosis, elevated intracellular reactive oxygen species levels, and decreased PI3K/AKT signaling. Collectively, we reveal a cholesterol dependency in ccRCC and implicate SCARB1 as a novel therapeutic target for treating kidney cancer. SIGNIFICANCE: We demonstrate that ccRCC cells are auxotrophic for exogenous cholesterol to maintain PI3K/AKT signaling pathway and ROS homeostasis. Blocking cholesterol import through the HDL transporter SCARB1 compromises ccRCC cell survival and tumor growth, suggesting a novel pharmacologic target for this disease. This article is highlighted in the In This Issue feature, p. 2945.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proliferación Celular/genética , Colesterol/uso terapéutico , Humanos , Neoplasias Renales/patología , Fosfatidilinositol 3-Quinasas/metabolismo
5.
IEEE Int Conf Rehabil Robot ; 2019: 994-999, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31374759

RESUMEN

Early detection of neurodevelopmental disorders in infants is critical for early intervention to improve their long-term function. Integrating natural play with quantitative measurements of developmental milestones may help to quickly and efficiently identify infants at-risk for developmental delays. Ailu is a sensorized toy designed to elicit and measure natural infant play interactions. Ailu is part of the Play and Neuro Development Assessment (PANDA) gym, whose purpose is to serve as a universal and quantitative screening tool for detection of delays. This case study describes design considerations made developing Ailu and evaluates Ailu's potential in upper limb, lower limb, and parent-guided testing with a 3-month old infant. Ailu can encourage reaching, kicking, and grasping, and will be tested for distinguishing typical and atypical development with further infant trials.


Asunto(s)
Discapacidades del Desarrollo/diagnóstico , Juego e Implementos de Juego , Femenino , Fuerza de la Mano/fisiología , Humanos , Lactante , Extremidad Inferior/fisiología , Extremidad Superior/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA