Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Inorg Chem ; 60(20): 15278-15290, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34581183

RESUMEN

The synthesis and photophysics (UV-vis absorption, emission, and transient absorption) of four neutral heteroleptic cyclometalated iridium(III) complexes (Ir-1-Ir-4) incorporating thiophene/selenophene-diketopyrrolopyrrole (DPP)-substituted N-heterocyclic carbene (NHC) ancillary ligands are reported. The effects of thiophene versus selenophene substitution on DPP and bis- versus monoiridium(III) complexation on the photophysics of these complexes were systematically investigated via spectroscopic techniques and density functional theory calculations. All complexes exhibited strong vibronically resolved absorption in the regions of 500-700 nm and fluorescence at 600-770 nm, and both are predominantly originated from the DPP-NHC ligand. Complexation induced a pronounced red shift of this low-energy absorption band and the fluorescence band with respect to their corresponding ligands due to the improved planarity and extended π-conjugation in the DPP-NHC ligand. Replacing the thiophene units by selenophenes and/or biscomplexation led to the red-shifted absorption and fluorescence spectra, accompanied by the reduced fluorescence lifetime and quantum yield and enhanced population of the triplet excited states, as reflected by the stronger triplet excited-state absorption and singlet oxygen generation.

2.
J Am Chem Soc ; 141(10): 4388-4397, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30712348

RESUMEN

Fully inorganic lead halide perovskite nanocrystals (NCs) are of interest for photovoltaic and light-emitting devices due to optoelectronic properties that can be tuned/optimized via halide composition, surface passivation, doping, and confinement. Compared to bulk materials, certain excited-state properties in NCs can be adjusted by electronic confinement effects such as suppressed hot carrier cooling and enhanced radiative recombination. Here we use spinor Kohn-Sham orbitals (SKSOs) with spin-orbit coupling (SOC) interaction as a basis to compute excited-state dissipative dynamics simulations on a fully passivated CsPbBr3 NC atomistic model. Redfield theory in the density matrix formalism is used to describe electron-phonon interactions which drive hot carrier cooling and nonradiative recombination ( knonrad). Radiative recombination ( krad) is calculated through oscillator strengths using SKSO basis. From krad and krad + knonrad, we compute a theoretical photoluminescence quantum yield (PLQY) of 53%. Computed rates of hot carrier cooling ( kcooling ≈ 10-1 1/ps) compare favorably with what has been reported in the literature. Interestingly, we observe that hot electron cooling slows down near the band edge, which we attribute to large SOC in the conduction band combined with strong confinement, which creates subgaps above the band edge. This slow carrier cooling could potentially impact hot carrier extraction before complete thermalization in photovoltaics (PVs). Implications of this work suggest that strong/intermediate confined APbX3 NCs are better suited to applications in PVs due to slower carrier cooling near the conduction band edge, while intermediate/weak confined NCs are more appropriate for light-emitting applications, such as LEDs.

3.
Inorg Chem ; 58(9): 5483-5493, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31060198

RESUMEN

Ten biscyclometalated monocationic Ir(III) complexes were synthesized and studied to elucidate the effects of extending π-conjugation of the diimine ligand (N^N = 2,2'-bipyridine in Ir1, 2-(pyridin-2-yl)quinoline in Ir2, 2-(pyridin-2-yl)[6,7]benzoquinoline in Ir3, 2-(pyridin-2-yl)-[7,8]benzoquinoline in Ir4, phenanthroline in Ir5, benzo[ f][1,10]phenanthroline in Ir6, naphtho[2,3- f][1,10]phenanthroline in Ir7, 2,2'-bisquinoline in Ir8, 3,3'-biisoquinoline in Ir9, and 1,1'-biisoquinoline in Ir10) via benzannulation at 2,2'-bipyridine on the excited-state properties and reverse saturable absorption (RSA) of these complexes. Either a bathochromic or a hypsochromic shift of the charge-transfer absorption band and emission spectrum was observed depending on the benzannulation site at the 2,2'-bipyridine ligand. Benzannulation at the 3,4-/3',4'-position or 5,6-/5',6'-position of 2,2'-bipyridine ligand or at the 6,7-position of the quinoline ring on the N^N ligand caused red-shifted charge-transfer absorption band and emission band for complexes Ir2, Ir8, Ir10 vs Ir1 and Ir3 vs Ir2, while benzannulation at the 4,5-/4',5'-position of 2,2'-bipyridine ligand or at the 7,8-position of the quinoline ring on the N^N ligand induced a blue shift of the charge-transfer absorption and emission bands for complex Ir9 vs Ir1 and Ir4 vs Ir2. However, benzannulation at the 2,2',3,3'-position of 2,2'-bipyridine or 5,6-position of phenanthroline ligand had no impact on the energy of the charge-transfer absorption band and emission band of complexes Ir5-Ir7 compared with those of Ir1. The observed phenomenon was explained by the frontier molecular orbital (FMO) symmetry analysis. Site-dependent benzannulation also impacted the spectral feature and intensity of the triplet transient absorption spectra and lifetimes drastically. Consequently, the RSA strength of these complexes varied with a trend of Ir7 > Ir5 ≈ Ir6 ≈ Ir1 > Ir3 > Ir2 > Ir10 > Ir4 > Ir8 > Ir9 at 532 nm for 4.1 ns laser pulses.

4.
Inorg Chem ; 58(21): 14377-14388, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31625389

RESUMEN

The synthesis, crystal structure, and photophysics of a series of neutral cyclometalated iridium(III) complexes bearing substituted N-heterocyclic carbene (NHC) ancillary ligands ((C∧N)2Ir(R-NHC), where C∧N and NHC refer to the cyclometalating ligand benzo[h]quinoline and 1-phenylbenzimidazole, respectively) are reported. The NHC ligands were substituted with electron-withdrawing or -donating groups on C4' of the phenyl ring (R = NO2 (Ir1), CN (Ir2), H (Ir3), OCH3 (Ir4), N(CH3)2 (Ir5)) or C5 of the benzimidazole ring (R = NO2 (Ir6), N(CH3)2 (Ir7)). The configuration of Ir1 was confirmed by a single-crystal X-ray diffraction analysis. The ground- and excited-state properties of Ir1-Ir7 were investigated by both spectroscopic methods and time-dependent density functional theory (TDDFT) calculations. All complexes possessed moderately strong structureless absorption bands at ca. 440 nm that originated from the C∧N ligand based 1π,π*/1CT (charge transfer)/1d,d transitions and very weak spin-forbidden 3MLCT (metal-to-ligand charge transfer)/3LLCT (ligand-to-ligand charge transfer) transitions beyond 500 nm. Electron-withdrawing substituents caused a slight blue shift of the 1π,π*/1CT/1d,d band, while electron-donating substituents induced a red shift of this band in comparison to the unsubstituted complex Ir3. Except for the weakly emissive nitro-substituted complexes Ir1 and Ir6 that had much shorter lifetimes (≤160 ns), the other complexes are highly emissive in organic solutions with microsecond lifetimes at ca. 540-550 nm at room temperature, with the emitting states being predominantly assigned to 3π,π*/3MLCT states. Although the effect of the substituents on the emission energy was insignificant, the effects on the emission quantum yields and lifetimes were drastic. All complexes also exhibited broad triplet excited-state absorption at 460-700 nm with similar spectral features, indicating the similar parentage of the lowest triplet excited states. The highly emissive Ir2 was used as a dopant for organic light-emitting diode (OLED) fabrication. The device displayed a yellow emission with a maximum current efficiency (ηc) of 71.29 cd A-1, a maximum luminance (Lmax) of 32747 cd m-2, and a maximum external quantum efficiency (EQE) of 20.6%. These results suggest the potential of utilizing this type of neutral Ir(III) complex as an efficient yellow phosphorescent emitter.

5.
Langmuir ; 34(27): 7951-7957, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29889535

RESUMEN

Macroscopic single-wall carbon nanotube (SWCNT) films of nanoscale thickness have significant potential for an array of applications that demand thin, transparent, conductive coatings. Using macroscopic micrometer thick polystyrene sheets as a reference, we characterize the elastic response of freestanding multifunctional SWCNT nanosheets possessing both exceptionally high Young's modulus and good durability. Thin SWCNT films (20-200 nm thick) asymmetrically "doped" with dilute concentrations of superparamagnetic colloids were suspended in ethanol as freestanding nanosheets. Through repeated and controlled deformation in an external magnetic field, we measure the temporal relaxation of nanosheet curvature back to equilibrium. From the relaxation time and its dependence on nanosheet thickness and length, we extract the SWCNT nanosheet modulus through a simple viscoelastic model. Our results are consistent with nearly ideal SWCNT rigidity percolation with moduli approaching 200 GPa and limited plasticity for sufficiently thick sheets, which we attribute to the screening of van der Waals interactions by the surrounding solvent and the macroscopic nature of the deformation.

6.
Langmuir ; 33(32): 7889-7895, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28742968

RESUMEN

Thin bilayers of contrasting nanomaterials are ubiquitous in solution-processed electronic devices and have potential relevance to a number of applications in flexible electronics. Motivated by recent mesoscopic simulations demonstrating synergistic mechanical interactions between thin films of single-wall carbon nanotubes (SWCNTs) and spherical nanocrystal (NC) inclusions, we use a thin-film wrinkling approach to query the compressive mechanics of hybrid nanotube/nanocrystal coatings adhered to soft polymer substrates. Our results show an almost 2-fold enhancement in the Young modulus of a sufficiently thin SWCNT film associated with the presence of a thin interpenetrating overlayer of semiconductor NCs. Mesoscopic distinct-element method simulations further support the experimental findings by showing that the additional noncovalent interfaces introduced by nanocrystals enhance the modulus of the SWCNT network and hinder network wrinkling.

7.
Soft Matter ; 13(13): 2492-2498, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28303267

RESUMEN

Lamellar nanosheets of contrasting materials are ubiquitous in functional coatings and electronic devices. They also represent a unique paradigm for polymer nanocomposites. Here, we use fluid-assembled lamellar nanosheets - alternating layers of polymer and single-wall carbon nanotubes (SWCNTs) - to gain insight into the flexural mechanics of such hybrid films. Specifically, we measure the modulus and yield strain as a function of both layer thickness and the total number of layers. Overall, we find that the multi-layered films exhibit the greatest synergistic effects near a layer thickness of 20 nm or less, which we relate to the characteristic width of the SWCNT-polymer interface. For all layer thicknesses, we find that the nanosheets have realized the bulk limit by six layers. Our results have potentially profound implications for controlling the rigidity and durability of polymer nanocomposites, thin hybrid films and flexible heterojunctions.

8.
Langmuir ; 30(27): 7936-46, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24417357

RESUMEN

Liquid-phase processing and colloidal self-assembly will be critical to the successful implementation of nanotechnology in the next generation of materials and devices. A key hurdle to realizing this will be the development of efficient methods to purify nanomaterials composed of a variety of shapes, including nanocrystals, nanotubes, and nanoplates. Although density-gradient ultracentrifugation (DGU) has long been appreciated as a valuable tool for separating biological macromolecules and components, the method has recently emerged as an effective way to purify colloidal nanoparticles by size and optical and electronic properties. In this feature article, we review our recent contributions to this growing field, with an emphasis on some of the implications that our results have for interfaces and materials. Through transient or isopycnic DGU performed in both aqueous and organic environments, we demonstrate some explicit examples of how the mechanical, electronic, and optical properties of thin films assembled from two specific colloidal nanomaterials--single-walled carbon nanotubes and silicon nanocrystals--can be modified in response to fractionation.

9.
Soft Matter ; 10(43): 8635-40, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25212697

RESUMEN

We combine experiments and distinct element method simulations to understand the stability of rings and rackets formed by single-walled carbon nanotubes assembled into ropes. Bending remains a soft deformation mode in ropes because intra-rope sliding of the constituent nanotubes occurs with ease. Our simulations indicate that the formation of these aggregates can be attributed to the mesoscopic mechanics of entangled nanotubes and to the sliding at the contacts. Starting from the single-walled carbon nanotubes, the sizes of the rings and rackets' heads increase with the rope diameter, indicating that the stability of the experimental aggregates can be largely explained by the competition between bending and van der Waals adhesion energies. Our results and simulation method should be useful for understanding nanoscale fibers in general.

10.
Soft Matter ; 10(11): 1665-75, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24651856

RESUMEN

The coupling between the 'coffee-ring' effect and liquid-liquid phase separation is examined for ternary mixtures of solvent, polymer and semiconductor nanocrystal. Specifically, we study mixtures of toluene, polystyrene (PS) and colloidal silicon nanocrystals (SiNCs) using real-space imaging and spectroscopic techniques to resolve the kinetic morphology of the drying front for varied molecular weight of the PS. Our results demonstrate that the size of the polymer has a significant impact on both phase-separation and drying, and we relate these observations to simulations, measured and predicted binodal curves, and the observed shape of the flow field at the contact line. The results inform a deposition process that reduces the influence of drying instabilities for low-molecular-weight polymers while paving the way for more detailed and generic computational descriptions of drying instabilities in complex fluids.


Asunto(s)
Nanopartículas/química , Polímeros/química , Cinética , Transición de Fase , Poliestirenos/química , Propiedades de Superficie
11.
J Chem Phys ; 141(4): 044901, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25084950

RESUMEN

The influence of a polymer capping layer on the deformation of purified single-wall carbon nanotube (SWCNT) networks is analyzed through the wrinkling of compressed SWCNT-polymer bilayers on polydimethylsiloxane. The films exhibit both wrinkling and folding under compression and we extract the elastoplastic response using conventional two-plate buckling schemes. The formation of a diffuse interpenetrating nanotube-polymer interface has a dramatic effect on the nanotube layer modulus for both metallic and semiconducting species. In contrast to the usual percolation exhibited by the pure SWCNT films, the capped films show a crossover from "composite" behavior (the modulus of the SWCNT film is enhanced by the polymer) to "plasticized" behavior (the modulus of the SWCNT film is reduced by the polymer) as the SWCNT film thickness increases. For almost all thicknesses, however, the polymer enhances the yield strain of the nanotube network. Conductivity measurements on identical films suggest that the polymer has a modest effect on charge transport, which we interpret as a strain-induced polymer penetration of interfacial nanotube contacts. We use scaling, Flory-Huggins theory, and independently determined nanotube-nanotube and nanotube-polymer Hamaker constants to model the response.

12.
J Phys Chem Lett ; 14(26): 6202-6208, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37382904

RESUMEN

Impurities that hinder luminescence are a common problem in the synthesis of nanocrystals, and controlling the synthesis reaction could provide a way to avoid or use impurities beneficially. Excited state molecular dynamics is used to determine how oxygen impurities appear in the plasma synthesis of silicon carbide nanocrystals (SiC NCs). Formation of impurities is studied by considering the intermediate structures in the simulated photoreaction. The results show the most probable bonding patterns of silicon, carbon, and oxygen. These intermediates are used as a basis for studying the luminescence of expected oxygen impurities in SiC NCs, where luminescence is studied by first-principles modeling and density matrix dissipative dynamics based on on-the-fly non-adiabatic couplings and the Redfield tensor. Modeling the dissipation of energy from electronic to nuclear degrees of freedom reveals multiple impurities with significant photoluminescence quantum yields.

13.
Rev Sci Instrum ; 93(8): 083906, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050056

RESUMEN

We performed x-ray photoelectron spectroscopy measurements on a thin film of Si nanocrystals (SiNCs) while applying DC or AC external biases to extract the resistance and the capacitance of the thin film. The measurement consists of the application of 10 V DC or square wave pulses of 10 V amplitude to the sample at various frequencies ranging from 0.01 to 1 MHz while recording x-ray photoemission data. To analyze the data, we propose three different models with varying degrees of accuracy. The calculated capacitance of SiNCs agrees with the experimental value in the literature.

14.
J Phys Chem Lett ; 12(31): 7504-7511, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34342460

RESUMEN

We provide a case-study for thermal grafting of benzenediazonium bromide onto a hydrogenated Si(111) surface using ab initio molecular dynamics (AIMD) calculations. A sequence of reaction steps is identified in the AIMD trajectory, including the loss of N2 from the diazonium salt, proton transfer from the surface to the bromide ion that eliminates HBr, and deposition of the phenyl group onto the surface. We next assess the influence of the phenyl groups on photophysics of hydrogen-terminated Si(111) slabs. The nonadiabatic couplings necessary for a description of the excited-state dynamics are calculated by combining ab initio electronic structures and reduced density matrix formalism with Redfield theory. The phenyl-terminated slab shows reduced nonradiative relaxation and recombination rates of hot charge carriers in comparison with the hydrogen-terminated slab. Altogether, our results provide atomistic insights revealing that (i) the diazonium salt thermally decomposes at the surface allowing the formation of covalently bonded phenyl group, and (ii) the coverage of phenyl groups on the surface slows down charge carrier cooling driven by electron-phonon interactions, which increases photoluminescence efficiency at the near-infrared spectral region.

15.
J Phys Chem Lett ; 11(17): 7133-7140, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32787334

RESUMEN

Using a combination of density-gradient and analytical ultracentrifugation, we studied the photophysical profile of CsPbBr3 nanocrystal (NC) suspensions by separating them into size-resolved fractions. Ultracentrifugation drastically alters the ligand profile of the NCs, which necessitates postprocessing to restore colloidal stability and enhance quantum yield (QY). Rejuvenated fractions show a 50% increase in QY compared to no treatment and a 30% increase with respect to the parent. Our results demonstrate how the NC environment can be manipulated to improve photophysical performance, even after there has been a measurable decline in the response. Size separation reveals blue-emitting fractions, a narrowing of photoluminescence spectra in comparison to the parent, and a crossover from single- to stretched-exponential relaxation dynamics with decreasing NC size. As a function of edge length, L, our results confirm that the photoluminescence peak energy scales a L-2, in agreement with the simplest picture of quantum confinement.

16.
ACS Nano ; 14(4): 3858-3867, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32150383

RESUMEN

Silicon nanocrystals (SiNCs) with bright bandgap photoluminescence (PL) are of current interest for a range of potential applications, from solar windows to biomedical contrast agents. Here, we use the liquid precursor cyclohexasilane (Si6H12) for the plasma synthesis of colloidal SiNCs with exemplary core emission. Through size separation executed in an oxygen-shielded environment, we achieve PL quantum yields (QYs) approaching 70% while exposing intrinsic constraints on efficient core emission from smaller SiNCs. Time-resolved PL spectra of these fractions in response to femtosecond pulsed excitation reveal a zero-phonon radiative channel that anticorrelates with QY, which we model using advanced computational methods applied to a 2 nm SiNC. Our results offer additional insight into the photophysical interplay of the nanocrystal surface, quasi-direct recombination, and efficient SiNC core PL.

17.
J Phys Chem Lett ; 10(10): 2394-2399, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-30978025

RESUMEN

The exploration of chemical reactions preceding ignition is essential for the development of ideal hypergolic propellants. Unexpected reaction pathways of a hypergolic mixture composed of monomethylhydrazine and nitrogen dioxide are predicted through a cooperative combination of (i) spin-unrestricted ab initio molecular dynamics (AIMD) and (ii) wave packet dynamics of protons. Ensembles of AIMD trajectories reveal a sequence of reaction steps for proton transfer and rupture of the C-N bond. The details of proton transfer are explored by wave packet dynamics on the basis of ab initio potential energy surfaces from AIMD trajectories. The possibility of spontaneous ignition of this hypergolic mixture at room temperature is predicted as a quantized feature of proton-transfer dynamics.

18.
J Phys Chem Lett ; 9(15): 4349-4354, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30004709

RESUMEN

Photoinduced reactions of a pair of cyclohexasilane (CHS) monomers are explored by time-dependent excited-state molecular dynamics (TDESMD) calculations. In TDESMD trajectories, one observes vivid reaction events including dimerization and fragmentation. A general reaction pathway is identified as (i) ring-opening formation of a dimer, (ii) rearrangement induced by bond breaking, and (iii) decomposition through the elimination of small fragments. The identified pathway supports the chemistry proposed for the fabrication of silicon-based materials using CHS as a precursor. In addition, we find dimers have smaller HOMO-LUMO gaps and exhibit a red shift and line-width broadening in the computed photoluminescence spectra compared with a pair of CHS monomers.

19.
ACS Appl Mater Interfaces ; 9(15): 13611-13618, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28345340

RESUMEN

Ultrathin carbon nanotube films have gathered attention for flexible electronics applications. Unfortunately, their network structure changes significantly even under small applied strains. We perform mesoscopic distinct element method simulations and develop an atomic-scale picture of the network stress relaxation. On this basis, we put forward the concept of mesoscale design by the addition of excluded-volume interactions. We integrate silicon nanoparticles into our model and show that the nanoparticle-filled networks present superior stability and mechanical response relative to those of pure films. The approach opens new possibilities for tuning the network microstructure in a manner that is compatible with flexible electronics applications.

20.
ACS Nano ; 11(2): 1597-1603, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28140563

RESUMEN

Intrinsic constraints on efficient photoluminescence (PL) from smaller alkene-capped silicon nanocrystals (SiNCs) put limits on potential applications, but the root cause of such effects remains elusive. Here, plasma-synthesized colloidal SiNCs separated into monodisperse fractions reveal an abrupt size-dependent partitioning of multilevel PL relaxation, which we study as a function of temperature. Guided by theory and simulation, we explore the potential role of resonant phonon interactions with "minigaps" that emerge in the electronic density of states (DOS) under strong quantum confinement. Such higher-order structures can be very sensitive to SiNC surface chemistry, which we suggest might explain the common implication of surface effects in both the emergence of multimodal PL relaxation and the loss of quantum yield with decreasing nanocrystal size. Our results have potentially profound implications for optimizing the radiative recombination kinetics and quantum yield of smaller ligand-passivated SiNCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA